



### Studies

- Second International Science Study
- Third International Mathematics and Science Study
- National Assessment of Educational Progress

16 April 200

WNYPTA

## Development of National Standards Science for All Americans (AAAS, 1989) National Science Education Standards (NRC, 1996) Emphases: process skills, inquiry and constructivism in science teaching and learning.

# Problem Solving Model\* Plan Obtain data Organize data Analyze data Generalize from the data Make decisions based upon the data \*New York State Regents Physics Syllabus, Appendix A (1988)

## Process Skills Models

Lunetta and Tamir (1979) - four foci:

- Planning
- Performing
- Analyzing and interpreting
- Application

16 April 2005

WNYPTA

## #

## **Development of NYS Standards**

- NYS Learning Standards in Mathematics, Science and Technology (NYSED, 1996)
- Developed from the <u>NSES</u> and <u>SFAA</u>
- Standards: 1 Analysis, Inquiry and Design, Scientific Inquiry, 2 Information Systems, 3 Math, 4 Science, 5 Technology, 6 Common Themes, 7 Interdisciplinary Problem Solving

16 April 2005

WNYPTA





| NYS Ass                          | essments                                   |     |
|----------------------------------|--------------------------------------------|-----|
| Response, Performanc Various org | (Physics, Chemistry)<br>nt (Earth Science) | nse |
| 16 April 2005                    | WNYPTA                                     | 9   |

## Dimensions of Performance Assessment Doran and Reynolds (1996): Novelty Structure Sequence Level Proposed: Organization

#

## The Independent Model -- Features

- Usually several stations
- Separate foci (within general area/topic)
- Several skills are tested
- Less time per task (station)
- Less "double jeopardy"

16 April 2005

#

## The Surrogate Model -- Features

- Assessment is a follow-up to a (prior) hands-on, in-class activity
- Assessment calls for students to critique evidence (data/conclusions/plans) from other students
- Assessment requires students to extend conclusions stated/predict to new investigation
- Students use their prior experiences
- No demand for equipment and materials
- No safety concerns

16 April 2005

WNYPTA

| • |  |  |  |
|---|--|--|--|
| - |  |  |  |
| • |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
| • |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
| • |  |  |  |
| • |  |  |  |
| - |  |  |  |



## The Integrated Model – Features

- Usually single location (lab site)
- A single overarching focus (context)
- A family of skills assessed
- Often a complete investigation

16 April 2005

WNYPTA

13



## Today's Agenda

- Overview of Performance Assessment formats
- Examples from
  - □ NORC Performance Assessment Task Collection
  - □ Sample task following current thinking for NYS Physical Setting: Physics
- Questions/Concerns/Comments

16 April 2005

WNYPTA

14



Thank you for your time and patience! Please feel free to contact me with questions, concerns or comments:

Joseph L. Zawicki, STANYS Physics DAL Assistant Professor, Science Education Science #130, Buffalo State College 1300 Elmwood Avenue Buffalo, NY 14222-1095 Office: (716) 878-3800; Fax: (716) 878-4524

16 April 2005

WNYPTA

\_\_\_\_\_