
\qquad

Assessment Purposes

- Teachers
- Measure knowledge
- Measure gain in knowledge
- Sorting (Grading) \qquad
- Students/Parents
- Measure preparation (predict success)
- School District/State Education Department
- Degree requirements (benchmarks)
- Others...

March 6, $2008 \quad$ Western Section STANYS
2 Conference
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Analysis

- Traditional
- Difficulty (Facility)
- Discrimination
- Response pattern
- Item format
- Difficulties analyzed in the context of issues: ${ }^{1}$
- Student
- Instructional (Teacher, School)
- Testing

March 6, 2008
${ }^{\mathbf{1}}$ NYS Biology Mentor Network
Western Section STANYS Western Section STANYS
Conference Conference
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Use of Assessment Data

- Formative techniques
- Whiteboards
- Exit slips
- Homework assignments
- Teacher quizzes
- Program review - Summative
- Statewide and regional exam summaries
- Mid-term and final exam data

March 6, 2008
Western Section STANYS
5 Conference

Assessment Concepts

- Difficulty - Percentage or proportion that are successful on an item
- Discrimination - How well does an item differentiate between students who understand the subject and those who do not?
- Validity - Does an item measure student understanding of the intended concept?

March 6, 2008

Concepts (Continued)

- Reliability - can the results be replicated?
- Inter-rater
- Test/Re-test
- Internal Consistency
- Criterion referenced tests \qquad

\qquad

Test Data -

Discussion and Analysis \qquad

- Collecting Data
- Analysis
- Difficulty \qquad
- Response Pattern

Multiple Choice Data

Item	Key Idea	Major Understanding
43	4.4.1-Trans. of Energy	4.1c Potential energy is the energy an object possesses by virtue of its position or condition...
${ }^{11}$	4.4.1-Trans. of Energy	4.1d Kinetic energy is the energy an object possesses by virtue of its motion.
12	4.4.1-Trans. of Energy	4.te In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies...
44	4.4.1-Trans. of Energy	4.1i Power is the time-rate at which work is done or energy is expended.

Item	Difficulty	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	NR
43	0.68	130	364	443	$\mathbf{2 1 6 3}$	73
11	0.88	142	60	105	$\mathbf{2 7 9 7}$	69
12	0.65	259	501	$\mathbf{2 0 5 6}$	346	$\mathbf{1 1}$
44	0.77	$\mathbf{2 4 5 O}$	222	292	137	72

Western Section STANYS
Conference

\qquad

Constructed Response Data					
Item	Difficulty	o	1	2	$\boldsymbol{N R}$
56 -CR	0.97	99	3074	o	-
49-CR	0.97	109	3064	o	-
$50-\mathrm{CR}$	0.96	125	3048	-	o
55-CR	0.96	138	3035	o	o
51-CR	0.87	416	2757	o	-
March 6, 2008		Conserier	${ }_{\text {ce }}^{\text {stanvs }}$		

\qquad

Claim \#1 - Equivalent Resistance
Students do not have a conceptual understanding of energy dissipation within a circuit.
March 6, 2008 Western secion sTANvs Conference

Equivalent Resistance

20 A 4.50-volt personal stereo uses 1950 joules of electrical energy in one hour. What is the electrical resistance of the personal stereo?
(1) 433Ω
(3) 37.4Ω
(2) 96.3Ω
(4) 0.623Ω

Item	Difficulty	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	NR
3	0.54	493	265	$\mathbf{1 7 0 7}$	636	72

Claim \#2 - Newton's Third Law	
Students do not "see" action/reaction	
pairs. Modified Benjamin Bloom: knowing using integrating	
March 6,2008	

61 Starting at point P on the diagram in your answer booklet, use a metric ruler and a scale of $1.0 \mathrm{~cm}=4.0 \mathrm{~N}$ to draw a vector representing the normal force acting on the box. Label the
vector $F N$. [1]
$D=0.49$
62 Calculate the magnitude of the frictional force acting on the box. [Show all work, including the equation and substitution with units.] [2] $\quad D=0.72$ 63 Determine the magnitude of the net force acting on the box. [1] $D=0.47$ 64 Determine the mass of the box. [1]
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Newton's Third Law

10 Earth's mass is approximately 81 times the mass of the Moon. If Earth exerts a gravitational force of magnitude F on the Moon, the magnitude of the gravitational force of the Moon on Earth is:
(1) F
(3) $9 F$
(2) $F / 81$
(4) $81 F$

Item	Difficulty	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	NR
3	0.34	$\mathbf{1 O 7 2}$	1718	66	317	0

March 6, $2008 \quad$ Western Section STANYS 17 Conference

Claim \#3-2-D Motion

Student find it difficult to recognize \qquad the independence of the vertical and horizontal motions. \qquad
\qquad
\qquad
\qquad

\qquad

June 2006 - Similar Case

A volleyball hit into the air has an initial speed of 10 . meters per

of time?
Horizontal

March 6, 2008
Western Section STANYS
20

Claim \#4 Mass/Weight

A 2.00 kilogram object weighs 19.6newtons on Earth. If the acceleration due to gravity on Mars is 3.71 meters per second ${ }^{2}$, what is the object's mass on Mars?

Item	Difficulty	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	NR
3	0.38	$\mathbf{1 5 3}$	$\mathbf{1 2 2 0}$	129	1597	74

March 6, $2008 \quad$ Western Section STANYS 21 Conference
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Conclusions

- Current results parallel data from previous years - difficult topics remain challenging
- Individual results are the most effective tools for program review \qquad
- Additional information:
J. Zawicki zawickjl@buffalostate.edu

