

J. Zawicki, Earth Sciences and Science Education K. Falconer, Elementary Education and Reading SUNY Buffalo State College T. Johnson, Erie 1 BOCES, WNYRIC

- Difficulty Percentage or proportion that are successful on an item
- Discrimination How well does an item differentiate between students who understand the subject and those who do not?
- Validity Does an item measure student understanding of the intended concept?

March 6, 2008

Western Section STANYS Conference

	wiuit	ipie	Ch	oice	Da	ata	l		
Item	Key Idea	Major Understanding							
43	4. 4.1-Trans. of Energy	4.1c Potential energy is the energy an object possesses by virtue of its position or condition							
11	4. 4.1-Trans. of Energy	4.1d Kinetic energy is the energy an object possesses by virtue of its motion.							
12	4. 4.1-Trans. of Energy	4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies							
44	4. 4.1-Trans. of Energy	4.11 Power is the time-rate at which work is done or energy is expended.							
			Item	Difficulty	1	2	3	4	N
			43	0.68	130	364	443	2163	7
			11	0.88	142	60	105	2797	6
			12	0.65	259	501	2056	346	1
			44	0.77	2450	222	292	137	7

Cons	tructe	d R	espo	nse	Data	L
Item	Difficulty	о	1	2	NR	
56-CR	0.97	99	3074	0	0	
49-CR	0.97	109	3064	0	0	
50-CR	0.96	125	3048	0	0	
55-CR	0.96	138	3035	0	0	
51-CR	0.87	416	2757	0	0	
March 6, 2008	Wes	tern Sectio Confere	n STANYS			1

Claim #1 - Equivalent Resistance

Students do not have a conceptual understanding of energy dissipation within a circuit.

March 6, 2008

Western Section STANYS Conference 12

	Equivalent Resistance							
(20 A 4.50-volt personal stereo uses 1950 joules of electrical energy in one hour. What is the electrical resistance of the personal stereo?							
	(1) 433Ω (3) 37.4Ω							
	(2)	96.3 Ω	(4) 0.623Ω					
	Item Difficulty		1	2	3	4	NR	
	3	0.54	493	265	1707	636	72	
	March 6, 2008 Western Section STANYS 13 Conference							

	ewton's Third La	
	e right along a horizontal, wood surface, as	
	20. N wooden box	
	Wood	
	the diagram in your answer booklet, use a metric aw a vector representing the normal force acting o	
the equation and su	ide of the frictional force acting on the box. [Show bstitution with units.] [2] tude of the net force acting on the box. [1]	all work, including D = 0.72 D = 0.47
64 Determine the mass of	0 11	D = 0.4/
March 6, 2008	Western Section STANYS Conference	16

	Mass/Weight ree of 8.0 newtons is used to pu oving toward the right along a h wn.	ill a 20newton
	20. N wooden box Wood	-
ruler and a scale	P on the diagram in your answer b of 1.0 cm = 4.0 N to draw a vector ing on the box. Label the vector F_N	representing the
62. Calculate the ma (Show all work.)	gnitude of the fricitional force acti [2]	ng on the box. D = 0.72
63. Determine the n	nagnitude of the net force acting on	the box. [1] D = 0. 47
64. Determine the n	nass of the box. [1]	D = 0.76
65. Calculate the ma work.] [2]	gnitude of the acceleration of the b	box. [Show all $D = 0.80$
March 6, 2008	Western Section STANYS Conference	22

