#	Major Understanding	D	R1	R2	R3	R4	NR
50	5.3g The Standard Model of Particle Physics has evolved	0.96	101	47	35	4410	2
09	5.1j When the net force on a system is zero, the system is in equilibrium.	0.91	237	4172	35	150	1
27	4.3c The model of a wave incorporates the characteristics of amplitude, wavelength	0.87	364	3976	148	105	2
29	4.3j The absolute index of refraction is inversely proportional to the speed of a wave.	0.87	135	291	190	3977	2
02	5.1e An object in free fall accelerates due to the force of gravity	0.86	3974	225	153	243	0
14	5.1p The impulse imparted to an object causes a change in its momentum.	0.86	222	3932	254	174	13
13	5.1n Centripetal force is the net force which produces centripetal acceleration	0.85	344	292	3889	70	0
10	5.1n Centripetal force is the net force which produces centripetal acceleration	0.84	495	3881	53	165	1
45	4.1e In an ideal mechanical system, the sum of the macroscopic kinetic and potential energies.	0.84	3851	323	249	171	1
26	4.3c The model of a wave incorporates the characteristics of amplitude, wavelength	0.83	181	167	3818	425	4
49	5.3d The energy of a photon is proportional to its frequency.	0.83	278	303	3814	197	3
31	4.3m When waves of a similar nature meet, the resulting interference may be explained	0.82	304	3756	155	378	2
19	4.1i Power is the time-rate at which work is done or energy is expended.	0.81	54	533	299	3707	2
01	5.1a Measured quantities can be classified as either vector or scalar.	0.80	3694	276	224	398	3
20	4.10 Circuit components may be connected in series or in parallel	0.80	3675	311	158	450	1
08	5.1k According to Newton's Second Law, an unbalanced force causes a mass to accelerate.	0.78	337	343	3573	326	16
15	5.1q According to Newton's Third Law, forces occur in action/reaction pairs	0.78	957	37	3601		0
25	4.3c The model of a wave incorporates the characteristics of amplitude, wavelength	0.78	490	3588	21	495	1
30	4.3m When waves of a similar nature meet, the resulting interference may be explained	0.78	630	126	247	3591	1
36	13.2 Extend their use of powers of ten notation to understanding the exponential	0.78	37	167	3566	825	0
28	4.3i When a wave moves from one medium into another, the wave may refract due	0.77	159	791	115	3530	0
40	5.1k According to Newton's Second Law, an unbalanced force causes a mass to accelerate.	0.74	3395	377	309	522	2
51	5.3g The Standard Model of Particle Physics has evolved	0.74	454	3420	237	481	3
23	4.1j Energy may be stored in electric* or magnetic fields. This energy may be	0.72	393	564	321	3309	8
03	5.1i According to Newton's First Law, the inertia of an object is directly proportional	0.69	131	773	517	3171	3
07	5.1d An object in linear motion may travel with a constant velocity or with acceleration.	0.69	130	303	3149	1011	2
11	5.1b A vector may be resolved into perpendicular components.	0.69	230	3163	362	830	10
37	5.1a Measured quantities can be classified as either vector or scalar.	0.69	17	1043	375	3156	4
42	5.1n Centripetal force is the net force which produces centripetal acceleration	0.68	977	3124	181	312	1
04	5.1d An object in linear motion may travel with a constant velocity or with acceleration.	0.66	445	175	3022	945	7
32	4.3n When a wave source and an observer are in relative motion, the observed frequency	0.66	86	122	1337	3048	2
38	5.1t Gravitational forces are only attractive, whereas electrical and magnetic forces can	0.66	1161	257	3017	159	1
06	5.1g A projectile's time of flight is dependent upon the vertical component of its motion.	0.65	2994	762	771	67	1
34	5.3h Behaviors and characteristics of matter, from the microscopic to the cosmic levels	0.65	1170	311	142	2970	2
47	4.1p Electrical power and energy can be determined for electric circuits	0.63	2898	205	1260	231	1
21	4.1p Electrical power and energy can be determined for electric circuits	0.62	2844	1269	478		4
17	4.1g When work is done on or by a system, there is a change in the total energy of the system.	0.60	2768	321	946	553	7
46	4.11 All materials display a range of conductivity. At constant temperature	0.59	617	605	2707	649	17
22	5.1s Field strength and direction are determined using a suitable test particle	0.57	2621	1724	103	142	5
05	5.1e An object in free fall accelerates due to the force of gravity	0.56	1181	220	2565	623	6
16	5.1u The inverse square law applies to electrical and gravitational fields	0.56	263	1486	2567	275	4
12	5.10 Kinetic friction is a force that opposes motion.	0.55	570	162	2537	1312	14
33	5.3b Charge is quantized on two levels. On the atomic level	0.55	381	2515	1401	289	9
43	5.1r Momentum is conserved in a closed system.	0.55	451	1246	352	2538	8
18	4.1c Potential energy is the energy an object possesses by virtue of its position or condition.	0.47	1931	2182	232	248	2
44	4.1g When work is done on or by a system, there is a change in the total energy of the system.	0.45	784	182	1572	2055	2
24	4.11 All materials display a range of conductivity. At constant temperature	0.44	2000	1090	1165	338	2
41	5.1j When the net force on a system is zero, the system is in equilibrium.	0.42	2239	331	1952	72	1
35	5.3j The fundamental source of all energy in the universe is the conversion of mass into energy.	0.41	1436	447	806	1896	10
48	4.3e Waves are categorized by the direction in which particles in a medium vibrate5.1c The resultant of two or more vectors, acting at any angle, is determined by vector addition.	0.41	2054 899	1895 1220	82 547	562 1919	2 10

#	Major Understanding	D	0	1	2
68	5.1m The elongation or compression of a spring depends upon the nature of the spring	0.97	153	4442	
64	5.1f The path of a projectile is the result of the simultaneous effect of the horizontal and	0.96	162	4433	
55	5.1a Measured quantities can be classified as either vector or scalar.	0.94	285	4310	
69	5.1m The elongation or compression of a spring depends upon the nature of the spring	0.93	340	4255	
73	4.3i When a wave moves from one medium into another, the wave may refract due	0.93	337	4258	
57	5.1b A vector may be resolved into perpendicular components.	0.88	548	4047	
74	4.3i When a wave moves from one medium into another, the wave may refract due	0.81	851	3744	
72	4.3i When a wave moves from one medium into another, the wave may refract due	0.79	697	573	3325
54	4.1d Kinetic energy is the energy an object possesses by virtue of its motion.	0.78	714	611	3270
67	4.11 All materials display a range of conductivity. At constant temperature	0.76	774	677	3144
53	4.1c Potential energy is the energy an object possesses by virtue of its position or condition	0.75	821	657	3117
60	4.1m The factors affecting resistance in a conductor are length, cross-sectional area,	0.75	708	921	2966
75	5.3f Among other things, mass-energy and charge are conserved at all levels	0.75	1114	3441	
62	5.1b A vector may be resolved into perpendicular components.	0.72	846	896	2853
58	5.1s Field strength and direction are determined using a suitable test particle	0.70	634	1525	2436
56	5.1c The resultant of two or more vectors, acting at any angle, is determined by vector addition.	0.68	1451	3144	
66	4.10 Circuit components may be connected in series or in parallel	0.68	1456	3139	
59	4.1m The factors affecting resistance in a conductor are length, cross-sectional area,	0.62	1736	2859	
71	5.1m The elongation or compression of a spring depends upon the nature of the spring	0.62	1751	2844	
61	4.3c The model of a wave incorporates the characteristics of amplitude, wavelength	0.60	1845	2750	
65	4.10 Circuit components may be connected in series or in parallel	0.58	1943	2652	
70	4.1c Potential energy is the energy an object possesses by virtue of its position or condition	0.45	1788	1481	1326
63	5.1e An object in free fall accelerates due to the force of gravity	0.40	2177	1124	1294
52	5.1d An object in linear motion may travel with a constant velocity or with acceleration.	0.37	2918	1677	
76	5.3j The fundamental source of all energy in the universe is the conversion of mass into energy.	0.26	3368	1187	

Data Courtesy of WNYRIC Data Warehouse 10-29-08 Presented by J. Zawicki, SUNY Buffalo State College May 2009