The Role of High-School Physics in Preparing Students for College Physics

By Philip M. Sadler and Robert H. Tai

It is a rare high-school teacher who does not view his or her physics course as being helpful in preparing students for college physics, yet many college physics professors question the worth of taking physics in high school. Studies have documented both the dissatisfaction of college professors with the knowledge and abilities of high-school graduates and the success that high-school teachers feel in preparing students for college.1–4 At the summer 1996 AAPT paper session, blood pressure was palpably soaring as these two groups debated this issue. The stakes are high. Nationally, over 650,000 students each year take high-school physics5 and success in college physics (taken by one-third million students) often is a prerequisite for many programs, including pre-med and engineering.6

Several studies have reported on the relationship between college physics and high-school preparation.7–10 All have shown that in introductory college physics courses, students who have studied physics in high school have performed better than their classmates who have not (although the strength of the relationship varies among the studies). So, it seems that this is a well-researched matter with fairly consistent results. Yet, there is something troubling about each of these studies.

Few alternative hypotheses were explored. Perhaps only suburban students, or those with highly educated parents take physics in high school. The success of these students in college physics may be more closely related to such demographic variables than to taking a high-school course in physics. Moreover, all the previous studies were undertaken at a single college or university. Since high-school teachers do not know which college their students will attend, a more generalizable result would be obtained by studying this issue at many institutions. To this end, we launched a study to determine the degree to which demographic variables and past high-school courses relate to success in first-semester college physics courses.

Methodology

To select a sample of college courses, we drew at random the names of 100 physics professors from a commercial mailing list. We hoped for a diverse group of institutions. Thirty-eight of these professors were identified as teachers of an introductory physics course; only 30 were teaching such a course in the fall of 1994 when we carried out the study. Six refused to participate, five more withdrew later because of lack of time or reported student reluctance to participate. Nineteen participated, a rate of 63% of the potential 30. They represented 19 courses at 18 colleges with 1933 students. There were nine public state and eight private institutions, plus one national military academy. Fifteen were universities, three were four-year colleges. Course sizes ranged from 21 to 292 students with a mean of 97 students.

We prepared a student questionnaire through interviews with college faculty, students, and high-school teachers. A pilot study in a local college helped us refine the range and possible answers to questions. We produced forms that could be scored by computer. The survey was designed to test many of the same variables of earlier studies, but we extended our questions to identify demographic variables and the different experiences that students had in their physics courses. We report here only on the course-taking and demographic issues.
We chose college grades as the most accessible and universal measure of student success in college physics. We feel this gauge reflects the values and beliefs of individual college professors better than any test we could devise. The 57-item survey was given to students during class time and student grades were later reported by the professor. The forms were coded and checked for accuracy.

Data and Analysis

Professors graded their students using a variety of schemes, so grades were all translated to a comparable 100-point scale. Students came from a wide variety of backgrounds. Most went to public school (84%). White students made up 78% of the sample, those with Asian backgrounds, 11%. African American and Latino students each represented 4% of the sample, and Native Americans 0.5%. Two-thirds of the students in the sample identified themselves as male. Roughly a third hailed from suburbs, while a quarter each were from small cities or small towns. Fourteen percent were from large cities and only 6% from rural areas. The majority (63%) of students had taken calculus in high school and 87% previously took both chemistry and biology. The high-school GPA of students (based on last science, math, and English courses taken) was 89 ± 8 (± one SD). Students’ parents varied in their level of education. Sixty percent of the students’ fathers had four or more years of college; this was true of 45% of mothers. Only 4% of students had mothers or fathers who had not completed high school.

Almost all students came from high schools offering physics (94%), yet only 82% took a high-school course in physics. Of the 293 students without high-school physics, 52 came from schools in which physics was not offered. Roughly half of the students in the sample took “regular” high-school physics. About one-sixth each took AP, honors physics, or none at all. Only 12 students identified their high-school course as primarily for nonscience students. Most students who took physics had a one-year course, although 13% of the sample had two or more years of high-school physics. These students were twice as likely to take AP physics in their second year than a non-AP course.

Previous studies found support for several variables contributing to success in introductory college physics courses. Hart and Cottle found a 6-point difference between students who had taken high-school physics and those who had not. Our sample shows a difference of only 2.4 points between these two groups. Hart and Cottle also found that students with a grade of B or better in their last high-school math class scored 6 points higher out of 100 (converted from 0.6 on a 4-point scale) than students with a grade of C+ or lower. The mean grade of those students in our study receiving a B or better in high-school math was 5 points higher than those receiving lower grades. Alters replicated Hart and Cottle’s study with 161 students. Again, students with a high-school physics course outperformed those without by 6 points on a 100-point scale, about half a full grade level.

Comparing means is a first step in analyzing the relationship between variables. Although it may seem reasonable to attribute the difference in mean grade to a particular variable, other factors may be better predictors of performance. By exploring many alternative hypotheses, we can build models that identify which sets of variables account for the most variance. Multiple regression is a tool for building models that can best explain the variation in college performance using several variables. This method also allows the calculation of the statistical significance of each of these variables in addition to its strength. We built three models in reverse stepwise fashion starting with all variables and removing those that were the least significant until all had a statistical significance of \(p \leq 0.05 \) (Table I). Excluded variables were tested at each step, one at a time, and the stepwise reduction iterated until no further variables met the required conditions.

Results should be interpreted as a way of explaining the variation in student grades within each college. Model A sets the baseline for variance. The college a student attends is used as a control variable, since some schools graded harder than others. Model B accounts for whether or not students took high-school

Robert H. Tai is a doctoral candidate in science education at the Harvard University Graduate School of Education and an educational researcher at the Harvard-Smithsonian Center for Astrophysics (Harvard Graduate School of Education and Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138). He received a B.S. in physics and a B.A. in mathematics from the University of Florida and an M.S. in physics from the University of Illinois. Robert taught physics in grades 7 through 12, and developed a high-school physics curriculum for the Wichita Falls Independent School District in Texas prior to entering Harvard.
Table I. Model A, B, and C. Multiple regression models for college grade in introductory physics. Model A includes all students. Model B includes all students and accounts for whether or not they have taken high-school physics. Model C includes statistically significant demographic variables. * (p ≤ 0.05), ** (p ≤ 0.01)

<table>
<thead>
<tr>
<th></th>
<th>Model A</th>
<th>Model B</th>
<th>Model C</th>
</tr>
</thead>
<tbody>
<tr>
<td>missing students</td>
<td>53</td>
<td>53</td>
<td>98</td>
</tr>
<tr>
<td>R^2</td>
<td>0.112</td>
<td>0.119</td>
<td>0.225</td>
</tr>
<tr>
<td>R^2 adjusted</td>
<td>0.104</td>
<td>0.110</td>
<td>0.214</td>
</tr>
<tr>
<td>College or university variables</td>
<td>included</td>
<td>included</td>
<td>included</td>
</tr>
<tr>
<td>Constant</td>
<td>89.36**</td>
<td>87.01**</td>
<td>45.67**</td>
</tr>
<tr>
<td>High-school physics taken</td>
<td>2.41**</td>
<td>2.41**</td>
<td>1.24**</td>
</tr>
</tbody>
</table>

Demographics

Private high school
Suburban school
White
Asian
Parents' education (≤ HS, HS, ≤ 4 years college, 4 years, ≥ 4 years)

Student Decisions

Professor's gender same as student
Took calculus in high school
HS GPA (A = 5, B = 4...)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

physics. Students who have taken high-school physics do 2.4 points better in college courses.

Model C adds several demographic variables and the amount of explained variance doubles. Students from private high schools did slightly worse than those from public schools. White and Asian students performed better than Native American, Black, or Hispanic students. Those students with well-educated parents also did better. Students in suburban schools appear to have a slight advantage. These results relate to the socioeconomic status of students. Students who took a college course from someone of the same gender got a boost in grades, as did those who had good grades overall in high school, and especially those who took a high-school calculus course. Gender of the students did not prove to be a significant variable. Girls did as well as boys in their college courses if we take into account the demographic variables.

The contribution of taking high-school physics shrinks to 1.24 points in this model. The probability of this being the result of a random fluctuation is $p = 0.049$, just on the edge of statistical acceptability. Students in this study were asked to predict how much high-school physics improves grades in college. The mean response was 7.8 points, six times larger than the effect found. High-school physics has a weight of less than half of taking a high-school calculus course.

Discussion

This study attempts to characterize the relationship between demographic variables, taking high-school physics, and later performance in introductory college physics. Inclusion of demographic variables reduces the apparent effect of earlier study of physics on later college performance.

Colleges that advise against or restrict enrollment in physics courses based upon prior enrollment in high-school physics should reconsider their policies. Students with strong academic backgrounds in high school and with a previous calculus course perform well in college physics without having taken the subject in high school.

Our study failed to find a strong relationship between college physics grades and taking physics in high school. Although preparation for future college coursework is emphasized by most high-school physics teachers, it is not the only goal espoused. Many teachers view their course as a way to connect students to the world in which they live, to help them become science “fans” following science in the press, or to even the inequities among genders or races concerning experiences in science. We believe, based on this work, that promoting a high-school physics course as preparation for college physics is not justifiable. This may seem counter to the anecdotal reports from college students who return to praise their high-school courses. Views of students who do not return may not be as supportive.

While, on average, taking a high-school physics course appears to have little relationship to college physics performance, 79% of the variance in student grades still remains unexplained. By accounting for other factors: level of physics course, number of years of high-school physics, teacher knowledge, teaching methods, emphasis on laboratory, constructivist orientation, or selection of text one can account for up to 20% of additional variance. We originally collected this data along with the reported demographic information and are currently completing our study. Our initial analysis finds that several decisions that high-school physics teachers make are linked very strongly to a student’s performance in college courses. Surprisingly, some types of high-school physics courses have the opposite effect; they predict worse college grades than taking no physics at all. Our hope is that our efforts will help to identify those decisions, practices, and resources that will aid those high-school physics teachers who wish to provide the best possible preparation for their college-bound students. We hope to report on these findings.
in the near future. Any reader who would like more information should contact the authors.

Acknowledgments

The authors wish to recognize the efforts of our research assistant Annette Trenta in preparing and organizing the survey. Professor Alan Lightman of MIT helped to formulate and carry out our pilot study, but has since left the project. Larry Suter of the National Science Foundation, Gerald Hart of Florida State University, and Michael Neuschatz of the American Physical Society gave us valuable feedback. Financial support for this project came from the Harvard Graduate School of Education Faculty Research Initiative Fund, the National Science Foundation (REC-9616773), and the Annenberg/CPB Foundation. Colleagues at the Harvard Smithsonian Center for Astrophysics who provided valuable assistance are Irwin Shapiro, Bruce Gregory, Susan Roubenbush, Harold Coyle, and Bruce Ward. Graduate School of Education colleagues we wish to thank: Terry Trivnan, Brian Alters, and Vito Perrone. Most of all, we are indebted to the professors who collaborated on this project and to their students, who gave of their time to answer our questions.

References

5. Indicators of Science and Mathematics Education 1995 (NSF 96-52), edited by Larry E. Suter (National Science Foundation, Virginia, 1996).

6. Michael Neuschatz, American Physical Society, College Park, MD, private communication, July 16, 1996. This may be a low estimate since colleges without physics departments, and physics courses outside of physics departments are not included.

11. Proximity to bodies of standing water was historically associated with high probability of contracting malaria. Yet, there must be both anopheles mosquitoes and the presence of human carriers of the disease. Those living near swamps without either do not contract malaria.