UNIT II: Particle Moving With Constant V- TEST (v1)

For each of the following graphs in questions 1-4:

a. Describe, using a clear, complete sentence, how the motion of object 2 differs from the motion of object 1. Explain how you know.

b. Sketch the graph of velocity vs time for object 1 and object 2. (label clearly)

c. In the space provided, draw motion maps for object 1 and object 2.

1.

2.
3. a.

4. a.

b.

c.

1

2

obj 1

obj 2

v (m/s)

t (s)

x (m)

t (s)
5. Construct a position-time graph for the motion described in the velocity-time graph shown below. Assume a position of zero at $t = 0$. Be sure to number the scale on the position axis.

6. Below is a qualitative motion map for Wandering Willie:

On the coordinate axes below sketch a graph which generally describes Willie's motion (you need not plot points).
7. Consider the position vs time graph for Flipper below

![Graph of position vs time for Flipper]

a) Determine Flipper's average speed. Show your work.

b) Mathematically model the relationship between position and time.

c) What will Flipper's position be at 8.0 s? Show how you got your answer.

8. Suppose that you are driving along at a steady 25 m/s (nearly 55 mph). Draw the \(v \) vs \(t \) graph on the axes below. At time \(t = 2.0 \) s, you reach down to tune in a different radio station, without changing speed. At time \(t = 5.0 \) s, you return your attention to the road. On the graph below represent the distance you traveled, while you weren't really paying attention to your driving. What is this distance?

![Graph of \(v \) vs \(t \)]

9. Charlie flew from Phoenix to Tucson, a distance of 120 miles, at a constant speed of 120 mph. He then returned at a constant speed of 60. mph. What was his:

a. trip distance? ______________

b. displacement? _____________

c. average speed? _____________

d. average velocity? _____________