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I. INTRODUCTION

This lab focuses on generating a model relating the
force applied to a spring and the distance the spring
stretches from its original length, or rest length.  This
relationship is well understood as Hooke’s Law and
states 1) extension of a spring is proportional to the
applied force and 2) a spring will return to its rest
length when the force is removed so long as the elastic
limit has not been exceeded.  Beyond the elastic limit,
springs exhibit plastic behavior where additional force
causes deformation of the spring such that the original
or rest length is altered.  Hooke’s Law is illustrated in
Fig. 1(1).

Mathematically, Hooke’s Law can be described in

Eqn. 1(2) where Fs_w is equal in magnitude to both Nw_s

and We_w (the applied force), k is the spring’s force
constant, which is unique for any given spring and is a
measure of the spring’s stiffness, and d  is the
displacement change in length of the spring from its
rest position.

( ) ( )gmdkWF weightswews ** === ÆÆ
(1)

The free body diagrams describing the elements in this
system are in seen Fig. 2.  Notice that Fs_w and Nw_s are
Newton 3rd law pairs.

We are specifically interested in experimentally
determining the spring constant, k, for our given spring.
This spring constant arises from various physical

One of the goals of science is the development of physical and mathematical models to describe
physical systems by using observational and experimental data.  We then use these models to
either explain previously observed data or to predict results that have not actually been observed
where the quality of the model determines its predictive value.  In this experiment, we focused on
developing a mathematical model relating the applied force on a spring and the resulting change
in length (or stretching).  We suspended weights of known masses (ranging from 0 g up to 270 g)
from a randomly chosen spring and measured the changes in length of the spring.  We then
plotted the change in length (m) against the force (N) exerted by the mass on the spring for all
our data points.  From our data, we saw a clear linear relationship between force and
displacement.  Using linear regression, we determined our spring force constant, Fs, to be
21.3 N/m and the initial tension, Tinit, of our spring to be approximately 0.5 N.  Our results
correlated nicely with Hooke’s Law, which provides a general mathematical model for springs
under compression and extension, but we further refined the prevailing mathematical model by
incorporating Tinit.

Fig. 1.  Illustration of Hooke’s Law.  As additional
weights are added, there is a linear increase in the
length of the spring.

Fig. 2.  Simple free body diagrams illustrating
relationship between forces present in our model.
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properties of the spring including the material it is
made from, the number of coils, the diameter of the
coils, etc.

This report will describe how we performed our
measurements and calculated our data points.  We will
then analyze our data and create a mathematical model
to describe our spring’s behavior while experiencing a
load.  From the perspective of this lab as a learning
tool, we will expand on the basic lab techniques that we
practiced, how we calculated our values and what we
learned while performing this lab.

We hypothesized that as we increased the force
Nweights_spring, the spring would lengthen.  Since we were
aware of Hooke’s Law before starting, we also
anticipated a linear relationship between this applied
force and the change in length.

When analyzing our data we have to take into account
the initial tension, Tinit, in our spring.  To ensure
consistent rest lengths, most spring manufacturers
design extension springs with an initial tension, which
keeps the coils pressed tightly together.  Hooke’s Law
may not work for small applied forces, as you must first
overcome any initial tension before you see any
apparent change in length(3).

II. MATERIALS AND METHODS

Equipment Used
    Spring (extension)
    Table clamp
    Weight hanger
    Weights (of known masses)
    String (of negligible weight)
    Lab scale

We first chose a random spring from the pool of
available springs.  We measured the length of this
spring as well as the length and mass of the weight
hanger.  We then set up the table clamp, spring and
weight hanger as illustrated in Fig. 3.  We also set up a
meter stick next to this apparatus so we could easily
and consistently make length measurements.  To reduce
variability in measurements, we had only one group
member make all measurements while other group
members focused on tracking data and organizing our
efforts.

We then proceeded to add weights to the weight hanger
and record the change in length, d (m), of the spring
(see Eqn. 2) where L  is the measured length on the
meter stick.

( )hangerweightrestspringtotal LLLd __ +-= (2)

We calculated the total force, F (N), at each data point

Fig. 3.  Apparatus and spring setup using mass hanger for
weights ≥ 50 g (0.5 N).  Note, this was not our spring, but
merely illustrates the setup.

Fig. 4.  Apparatus and spring setup using string to hold weights
< 50 g (0.5 N) to the spring.   Note, this was not our spring, but
merely illustrates the setup.
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using Newton’s Second Law (Eqn. 3) and taking into
account the total mass applied to the spring (Eqn. 4)
where g is the force of gravity (9.80 m/s2).

ÆÆ

= amF (3)

( ) gmmF *gerweight_hanweights += (4)

We were also interested in gathering some data points
for masses less than 50 g.  Since the weight hanger had
an inherent mass of 50 g, to make smaller
measurements, we had to remove the weight hanger
and use a piece of string (negligible weight) to tie small
weights to the spring (see Fig. 4).  To calculate forces
for these data points, we used Eqn. 5.

gmF *weights= (5)

When measuring the change in length, our uncertainty
was ±  1 mm.  Since the weights were of known
calibrated masses, we did not include any uncertainy
for them.  However, we did measure the mass of the
weight hanger and have to include the uncertainly in its
measurement as ± 0.1 g.

As we made our measurements, we entered these into
Microsoft Excel 1997 for analysis.  We graphed
changes in spring length versus applied force, added
linear trend lines and used these to calculate the spring
force constant.

III. RESULTS

Our group chose a small spring (approximately 1 cm

Spring Stiffness (Displacement vs Applied Force)

When F>T init  :
   d(F) = 0.047F - 0.025
   F(d) = 21.3d + 0.53

When F<T init  :
   d(F) = 0.00F + 0.00
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Fig. 5.  Relates change (or displacement) in spring length, d (m), as a function of applied force (or load), F (N), on the
spring.  The “Weights on String” data series (indicated by points with red squares) were measure by suspending the weights
using a string of negligible weight.  These points show no change in d per unit increase in F and illustrate that the applied
force F is less than the initial tension Tinit (~ 0.53 N) of the spring.  The data “Weights on Hanger” (indicated by black
circles) indicate data points taken using a “mass hanger” rather than a string to hold the weights.  The mass of this hanger
(50 g ± 0.1 g) was taken into account when computing the F values.  We see from the trend lines that once F exceeds Tinit,
we have a clear linear relationship between d and F.   The calculated slope of loads greater than 0.5 N is 0.047 m/N, which
gives us a spring force constant of k = 21.3 N/m for this spring.  Note that the uncertainty in d is ± 0.001 m and these error
bars are present, but are not easily seen as they are very close to the plotted points.
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diameter, 8 cm long and 10 g) for our experiment.  Our
observed measurements are graphed in Fig. 5.   For
weights less than 0.5 N, we saw no appreciable change
in displacement and the spring coils remained tightly
together (r = 0.641, se = 0.000).  Over this range, the
graph is a horizontal line following the x-axis.  For
weights greater than 0.5 N, we saw a very strong linear
correlation (r = 1.000, se = 0.001) between increased
weight, F (N), and increased stretching, d (m), of our
spring.  We took measurements up to 3.5 N but did not
go any higher for fear of exceeding the elastic limit of
our spring and entering the plastic zone (at which point
the spring starts permanently deforming).  In Fig. 5, we
separated our data points based on how we attached the
weights to the spring.  For weights less than 0.5 N, we
used a piece of string (these points are indicated with
red squares).  For weights 0.5 N and greater, we used a
standard mass hanger (of weight 0.5 N) and additional
weights to total the desired test amount.  MS Excel
utilized linear regression to generate the trend lines.
We calculated our spring force constant, k , to be
21.3 N/m (using Eqn. 1) and we observed an initial
tension, Tinit, in our spring of approximately 0.5 N.

IV. DISCUSSION

From our data, our spring clearly obeyed Hooke’s law
as we anticipated.  Given the size of our spring, the
spring force constant of 21.3 N/m seemed quite
reasonable.  However, two surprising results were 1)
how closely our data fit a linear model, and 2) how
dramatic the initial tension appeared in our graph.

Typically, when scientists gather data and attempt to
create mathematical models, they find general
correlations and trends, but usually see variation in
observed data versus predicted values from the model.
Most often, the model will describe the general trend
but individual data points will have a noticeable
departure from the predicted values.  Using statistical
measures, we found a correlation coefficient of
r = 1.000 and a standard error of se = 0.001.  This
indicated that 1) there was an absolute correlation
between an increase in applied force and an increase in
spring length, and 2) the data points we observed were
almost a perfect fit to our linear model.

The second surprise was the dramatic shift in our trend
lines at about 0.5 N (see Fig. 5).  We had anticipated
that our spring would obey Hooke’s Law, but before
beginning the experiment, we had not heard of the
property of initial tension in a spring.  While
interpreting our data, we researched this phenomenon
and found that most extension springs (as opposed to

compression springs) are manufactured with the coils
tightly pressed against each other.  This ensures
consistent rest length (a feature that many customers
look for).  However, this initial tension must first be
overcome before a spring will stretch.  From our graph,
the initial tension in our spring was approximately
0.5 N.  Our graph does not take into account the weight
of the spring itself as it was suspended.  To obtain a
more accurate measure of Tinit, we would need to repeat
the 0 – 0.5 N data points in a horizontal rather that
vertical format with the spring resting on a near
frictionless surface.  In this manner, the weight of the
spring would neither increase nor decrease the apparent
Tinit.  Because our spring’s weight was low relative to
the 0.5 N observed tension, we can say that the initial
tension is close to 0.5 N, but in reality should be
slightly greater (subtracting the weight of the spring).

Looking back at our initial model, we should probably
modify it to take into account Tinit.  Revisiting Eqn. 1
for our spring yields:

)*( dkTWF initwews +== ÆÆ
(6)
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Unlike the original proposed Eqn. 1 (from Hooke’s
Law), Eqn. 6 and Eqn. 7 should accurately model
extension springs (whether or not they have any initial
tension) and Eqn. 8 specifically models our spring.

V. CONCLUSION

During this lab, we gained practice in making basic
physical measurements, performing simple calculations
and analyzing data sets to create a model for a physical
system (the stretching of a spring).  By taking data on
our system we clearly developed a model stating, “For
forces greater than 0.5 N, our spring will stretch
0.047 m per 1.0 N of applied force.”  Half of this
statement was quite expected and fits with known and
well-established properties of springs.  However, the
other half of our model (i.e. the “discovery” of initial
tension  in our spring of ~ 0.5 N) illustrates the
importance of understanding what the data means and
realizing that models must fit with observations not the
other way around.  Where discrepancies exist, it is the
model that is usually found to be lacking.  In fact, the
unusual and unexpected data often prove to be far more
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interesting than the expected data.  This we believe is
the take home message from the experiment.
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