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An Investigation of Factors Affecting the Degree
of Naive Impetus Theory Application

Xiufeng Liu'* and Dan Maclsaac?

This study investigates factors affecting the degree of novice physics students’ application of
the naive impetus theory. Six hundred and fourteen first-year university engineering physics
students answered the Force Concept Inventory as a pre-test for their calculus-based course.
We examined the degree to which students consistently applied the naive impetus theory
across different items. We used a 2-way repeated measures ANOVA and linear regression
to analyze data coded from incorrect student responses. It was found that there were sta-
tistically significant main effects for item familiarity and item requirement for explanation
vs. prediction on the measured degree of impetus theory application. Student course grades
had no significant effect on impetus theory application. When faced with items that were un-
familiar and predictive, students appeared to rely on non-theoretical, knowledge-in-pieces
reasoning. Reasoning characteristic of naive theories was more frequently applied when stu-
dents were completing familiar problem tasks that required explanation. When considering
all the above factors simultaneously, we found that the degree of naive impetus theory appli-
cation by students is attributable to variables in the following order: familiarity, prediction,

and explanation.
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INTRODUCTION

Promoting student conceptual understanding in
science has been a focus in science education reform
over the past two decades. The theoretical founda-
tion for such a reform is mainly related to students’
alternative conceptions and conceptual change (see
comprehensive reviews by Duit and Treagust, 2003;
Keil, 1998; Tyson et al., 1997; Wandersee et al., 1994).
Conceptual change theories claim that students have
various alternative or naive conceptions about a sci-
ence concept they are going to learn, and the key
to successful science teaching is to identify students’
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preconceptions and design appropriate learning se-
quences for students to critically evaluate their pre-
conceptions and construct new meanings compatible
with current scientific theories.

Although conceptual change science teaching
is a pedagogical issue, effective conceptual change
science teaching requires appropriate understanding
about the nature and development of students’ alter-
native conceptions, which is a cognitive issue. It is
commonly accepted in science education that student
cognition is domain specific (Driver, 1983; Driver and
Easley, 1978; Erickson, 1994). Children are universal
novices; one key difference between novices and ex-
perts is the amount of knowledge they have in a spe-
cific domain and how such knowledge is organized
(Bedard and Chi, 1992; Chi and Koesk, 1983; Chi,
1978; Schneider et al., 1993). Thus, conceptual change
science teaching is to facilitate children’s knowl-
edge reconstruction through building more coherent
knowledge networks from less coherent knowledge
networks instead of replacing old knowledge systems
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by new ones. However, student cognition is also con-
text specific (Lave, 1978; Lave and Wenger, 1991).
Thus, conceptual change science teaching needs also
to help students reason and apply appropriate knowl-
edge in various contexts.

The above two views on cognition, i.e. the do-
main specific or structural and the context depen-
dent, have resulted in two different views about the
characteristics of students’ alternative conceptions.
In general, those different views are of two types —
those emphasizing the inconsistency among various
alternative conceptions within and among students
and those emphasizing the consistency among var-
ious alternative conceptions within and among stu-
dents. Building on previous research to resolve the
difference between the above two views, this study is
another effort to clarify this cognitive dispute. The
pedagogical importance of resolving this cognitive
dispute is to inform how conceptual change science
teaching should be designed and implemented. That
is, advocates believing in the consistency of students’
alternative conceptions may design and implement
conceptual change science teaching around devel-
oping and modifying students’ cognitive structures,
while those believing in the inconsistency of students’
alternative conceptions may design and implement
conceptual change science teaching around develop-
ing appropriate learning contexts conducive to devel-
oping scientific understanding.

Different Views on the Consistency
of Student Alternative Conceptions

Views emphasizing the inconsistency of student
conceptions are represented by diSessa (1988, 1993)
and diSessa and Sherin (1998). diSessa and Sherin
(1998) claimed that there are two components in a
student’s concepts associated with structure and per-
formance. The structural component includes a set
of readout strategies for getting information and a
causal net of general beliefs. The readout strategies
are specific to problem tasks, while the causal net is
the general class of knowledge and reasoning strate-
gies that determine when and how some observa-
tions are related. diSessa and Sherin further claim
that students’ causal nets in physics are usually an un-
coordinated and naive “senses of mechanism” called
“p-prims” (phenomenological primitives). P-prims
are tiny ideas associated with perceived features of
particular problem situations. This view of the un-
coordinated nature of students’ alternative concep-
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tions, particularly as applied to introductory physics,
appeared in earlier publications by diSessa (1988,
1993).

Specifically, diSessa argued that novice learn-
ers’ knowledge of physical phenomena is not a logi-
cally organized structure, but more like knowledge in
pieces. Students’ naive conceptions are phenomeno-
logical because they are responses to experienced
and observed phenomena and are specifically linked
to these phenomena rather than being general or ab-
stract. Students’ naive conceptions are primitive be-
cause they are self-evident to themselves and there-
fore require no further explanation. Because p-prims
are fragmented, uncoordinated, and context depen-
dent, novices’ conceptions have no commitment or
systematicity. Other researchers also subscribe to
the notion of knowledge-in-pieces. For example,
Minstrell (2001) analyzed introductory physics learn-
ers reasoning at length. He identified and catalogued
a large collection of various small units of knowl-
edge he termed “facets” and related them to a par-
ticular learning outcome to form a hierarchical facet
cluster. Unlike diSessa’s p-prims, Minstrell’s facet
clusters bridge to scientific conceptions or learning
standards.

Views emphasizing the consistency of stu-
dents’ alternative conceptions can be summa-
rized into three types: theory theory, mental
model theory, and ontological attribution theory.
Theory theory suggests that students’ alternative
conceptions are organized into coherent, causal-
explanatory systems within specific domains (Brewer
and Samarapungavan, 1991; Carey, 1985; Gopnik
and Wellman, 1994; Gopnik and Meltzoff, 1997,
Schwitzgebel 1999; Wellman, 1990). “The hypothe-
sis of theory theory is that there are deep similar-
ities between the underlying cognitive mechanisms
involved in the epistemological endeavors of child-
hood and of science” (Gopnik and Wellman, p. 259).
Of course, students’ theories may not be scientific;
they are often everyday folk theories—coherent sys-
tems that organize and structure everyday thinking.
Gopnik and Meltzoff described three classes of fea-
tures characteristic of theories; they are structural
features (i.e. abstractness, coherence, causality, and
counterfactuals), functional features (i.e. prediction,
interpretation, and explanation), and dynamic fea-
tures (i.e. denial, ad hoc auxiliary hypothesis, alter-
native models, and intense experimentation and ob-
servation). Schwitzgebel proposed that: (a) a theory
is a set of propositions; (b) any set of propositions
can potentially be regarded as a theory, and to regard
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a set of propositions in this way is to be commit-
ted to evaluating that set of propositions in terms of
its capacity to generate good explanations in a do-
main; and (c) to subscribe to a theory is to accept the
propositions composing it and to employ them, or be
disposed to employ them, in explaining phenomena
within the theory’s domain.

The mental model theory has been around
for quite some time (Gentner and Stevens, 1983;
Johnson-Laird, 1983), but it has only recently gained
prominence in science education for explaining stu-
dent alternative conceptions (Chiu et al., 2002; Coll
and Treagust, 2003a,b; Gilbert and Boulter, 2000;
Taber, 2003; Taylor et al, 2003; Vosniadou and
Brewer, 1992). Mental models are mental repre-
sentations for interpreting experiences and making
sense of the physical world (Coll and Treagust).
Mental models are functional evolving systems; they
are incomplete and may not be scientific. Johnson-
Laird asserts that the essence of mental models is
to build a working model of the phenomenon in
the mind in order to make predictions. Importantly,
mental models are applied consistently across differ-
ent contexts (Gentner and Stevens, 1983; McCloskey,
1983; Rogers et al., 1992; Vosniadou, 1992, 1994;
Vosniadou and Brewer, 1992).

The third view emphasizing the consistency of
students’ alternative conceptions is the ontological
category theory (Chi, 1992; Chi and Roscoe, 2002;
Chi et al., 1994; Keil, 1989). For example, Chi and
Roscoe claim that (a) concepts are loosely struc-
tured in something like a hierarchy tree accord-
ing to different ontologies, such as material sub-
stance (e.g. natural kind and artifact), processes (e.g.
procedure, event, and constraint-based interaction),
and mental states (e.g. emotional and intentional);
(b) trees are fundamentally distinct from one another
in ontology; (c) people’s conceptual structures cor-
respond to different trees and branches. Based on
the above assumptions, they argued that misconcep-
tions are mis-categorizations of concepts across on-
tological categories. When examining the variety of
student alternative conceptions from the above on-
tological framework, they found much consistency in
student alternative conceptions.

The above three views on the consistency of
student alternative conceptions are distinct, but also
related. Vosniadou (1992, 1994) claimed that spe-
cific theories are built from everyday experiences or
instruction to explain a limited range of phenom-
ena. She considers that a theory is based on a few
abstract and stable core presuppositions or beliefs,
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but that a mental model is a transient and analogi-
cal construction, elaborated on the spot for the pur-
pose of solving a given problem. Giere (1988) claims
that scientific theories are families of models. Sim-
ilarly, Brewer (1999) claims that scientific models
are theories, and it is the underlying model that
gives scientific theories power to explain phenom-
ena. In fact, proponents of mental models consider
scientific theories as consensus models (Gilbert and
Boulter, 2000). A relationship between the ontolog-
ical attribution theory and mental model/theory the-
ory also exists. For example, in a recently study, mis-
attribution of ontology to a concept by a novice was
considered to be a naive mental model (Mazens and
Lautrey, 2003).

Resolving the Difference

Attempts have been made to resolve the above
differences. For example, Anderson et al. (1992) con-
ducted an experimental study investigating the con-
sistency of novices’ conceptions of motion. They
used 16 problems related to independent linear, de-
pendent linear, circular, and pendular motion. They
found that the subjects were likely to give a more
accurate response if mass/velocity variables were ei-
ther both small in value or both large in value. On
the other hand, if one variable was high in value and
simultaneously the other was low, the subjects were
likely to give a less accurate response. In particu-
lar, the naive impetus theory was more commonly
applied when objects had high velocity/low mass
than when objects had low velocity/high mass. The
above findings suggest that mental models existed
in novices only to a limited degree, not universally
as implied by the mental model theory. However,
when considering item requirement for prediction
or explanation, they found that students’ predic-
tion of paths and directions was inconsistent (as in-
dicated by low mean inter-item correlation, 0.12),
but that students’ explanation of motion was highly
self-consistent (as indicated by high mean inter-item
correlation, 0.73). They concluded that both men-
tal models and knowledge-in-pieces played a role in
novices’ conceptions of motion, and which is pre-
dominant depends on item contextual characteristics
(such as velocity and mass) and item requirement for
prediction or explanation. It is not known whether
there are other contextual factors correlated with
the degree of student application of a naive mental
model.
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In a more recent study, Mazens and Lautrey
(2003) studied 6-10 year old children’s conceptions
of sound. They identified four mental models in
students’ naive conceptions from associating sound
with material objects (the naive idea) to considering
sound as vibration (the scientific). Models identified
by Mazens and Lautrey included: (a) sound cannot
pass through other objects unless there are holes to
pass through, (b) sound can pass through solids if
sound is harder than the objects, (c) sound is immate-
rial, and (d) sound is a vibratory process. Specifically
in the case of the mental model attributing all prop-
erties of matter to sound, Mazens and Lautrey did
not find two distinct groups of children— those chil-
dren who attributed all properties of matter to sound
and those children who did not attribute all proper-
ties of matter to sound. Instead, different properties
of matter seemed to be attributed and abandoned in
a hierarchical rather than synchronic fashion from 6
to 10 years old. Although the various forms of in-
consistency of student responses seemed to support
the knowledge-in-pieces theory where different p-
prims were activated according to the surface cues
of the situation, examination of the arguments given
by children also suggested relatively stable beliefs
and presuppositions underlying the apparent incon-
sistency. Thus, Mazens and Lautrey concluded that
a lack of consistency among the properties in chil-
dren’s responses could not be totally interpreted as
corresponding to an absence of structure in naive
knowledge. They suggested that a continuum be-
tween knowledge-in-pieces and mental models might
exist in students’ naive conceptions, and that students
could experience a transition from naive conceptions
to more scientific conceptions.

The difference between student use of mental
models and knowledge-in-pieces may also be related
to students’ academic background. For example, the
Force Concept Inventory (Hestenes et al., 1992/1995)
was designed for assessing students’ Newtonian and
non-Newtonian conceptions of force through six
closely related categories of questions. Through fac-
tor analysis of correct and incorrect responses, elim-
inating specific distracter data, based on both high
school and university samples, Huffman and Heller
(1995) found that only fewer than 6 FCI items con-
verged on any single factor, and that the two sam-
ples suggested different factors. Huffman and Heller
interpreted their results to suggest that students’
reasoning of the force concept was uncoordinated
and context dependent, supporting the knowledge-
in-pieces theory. However, Hestenes and Halloun
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(1995) counter-argued that a single factor solution of
factor analysis consistent with the Newtonian force
concept could be expected if a non-novices (i.e. those
who scored 60% — 80% on the inventory) or a physi-
cist data sample were used. Hestenes and Halloun
suggested that for novices, factor solutions from fac-
tor analysis would be more in agreement with the
clusters of naive conceptions identified in Hestenes
et al. (1992/1995). In fact, one factor identified by
Huffman and Heller contained some of those items
identified as indication of the impetus naive theory
by Hestenes et al. If Hestenes and Halloun are cor-
rect, then the application of mental models may also
depend on students’ academic levels.

Experts are found to apply mental models more
consistently than novices (Chi et al., 1981; Chi et al.,
1988; Chi et al., 1982), while novices commonly
apply the impetus theory (Hallouin and Hestenes,
1985a,b). Experts are found to (a) possess extensive
and highly integrated bodies of domain knowledge;
(b) be effective at recognizing the underlying struc-
ture of domain problems; (c) select and apply ap-
propriate problem-solving procedures for the prob-
lem at hand; and (d) retrieve relevant domain knowl-
edge and strategies with minimal cognitive effort
(Alexander, 2003). The above novice-expert distinc-
tion may suggest that the application of the impetus
theory is a higher level of cognitive performance than
knowledge-in-pieces. From a genetic epistemological
view, Piaget perceived that the impetus theory was a
more advanced theory than the Aristotelian theory
of inherent motion (Piaget and Garcia, 1989).

Thus, it appears that there is no dichotomy be-
tween mental models and knowledge-in-pieces, be-
cause the application of mental models seems to
depend on various factors. The literature reviewed
above suggests that these factors may include stu-
dents’ academic backgrounds, specific item require-
ments for explanation or prediction, and students’ fa-
miliarity with the problem tasks or contexts. Thus,
mental models and knowledge-in-pieces differ not in
quality but in quantity — degrees of consistency in re-
sponses to problems. No research has been reported
that explicitly and systematically investigates those
factors on the degree of consistency, which is the pur-
pose of the present study. Specifically, we investigate
the degree of novices applying the impetus theory
and the factors affecting their application of the im-
petus theory. We test the hypotheses that students’
academic achievement, familiarity with item context,
and item requirement for prediction or explanation
affect novices’ application of the impetus theory.
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The focal research questions for this study are:

1. Is there a statistically significant difference in
percentages of students applying the impetus
theory between items that require prediction
and items that require explanation?

2. Is there a statistically significant difference in
percentages of students applying the impetus
theory between items that are familiar to stu-
dents and items that are unfamiliar to stu-
dents?

3. Are there statistically significant interaction
effects between student academic achieve-
ments and the above independent variables
(i.e. item familiarity, and item requirement of
explanation or prediction)?

4. Which of these factors when simultaneously
considered significantly predict the overall
percentage of students applying the naive im-
petus theory?

This study will further illuminate the nature of
student alternative conceptions so that new theo-
ries on student conceptions and conceptual change
may be developed. It will bring clarity to the on-
going debate on mental models/theory theory and
knowledge-in-pieces regarding students’ alternative
conceptions. The results also have practical signifi-
cance by shedding new light on the currently pro-
moted model-based science teaching and learning
approach (e.g. De Jong et al., 1999; Korfiatis et al.,
1999; Linn and Muilenburg, 1996; Monaghan and
Clement, 1999; Stewart et al., 1992; Treagust et al.,
2002; Windschitl, 2001).

METHOD
Data Source

The data used in this study came from a
pre-instructional survey involving 614 university
calculus-based physics course registrants. The instru-
ment was the revised version of the Force Con-
cept Inventory (FCI) (Hestenes et al, 1992/1995).
The multiple-choice based paper and pencil survey
“requires a forced choice between Newtonian con-
cepts and common-sense alternatives” (Hestenes
et al., 1992/1995, p. 142). The FCI is a popular in-
strument in physics education as it has been given
to thousands of physics students of various levels
of instruction across dozens of institutions (Hake,
1998). The FCI was developed through analysis of
interviews of students from 9th grade to university
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undergraduate and graduate physics (Hallouin and
Hestenes, 1985a,b; Hestenes et al., 1992/1995) with
distracters derived from student alternative concep-
tions. The FCI’s quite invidious distracters are culled
from student reasoning; hence it is common for new
students with no previous physics instruction to score
much lower on the FCI than random chance alone
would predict.

Most items in the 1995 version are exactly
the same as in the 1992 version; however, some
items were reordered, or had choices re-ordered, a
few items were new and some original items were
deleted. Because our interest in this study is on the
naive impetus theory, we will only focus on the items
and their distracters identified as involving the im-
petus theory by Hestenes et al. (1992/1995, p. 144).
According to Hestenes et al., impetus is perceived by
novices as an inanimate “motive power” or “intrinsic
force” that keeps objects moving, which contradicts
Newton’s First Law. Evidence that a student believes
in some kind of impetus is therefore evidence that
the First Law is not understood.

Hestenes et al. listed the distracters of the FCI
items indicating the application by novices of the im-
petus theory. There were 13 such items with vari-
ous distracters (see Appendix). Some FCI distracters
are related to an impetus supplied by a “hit,” some
related to the loss or recovery of an original impe-
tus, others related to a gradual or delayed impetus
build-up, and still others related to a circular impetus.
Table I columns 1-4, present those distracters in the
original 1992 version of FCI and their corresponding
item distracters in the (now prevalent) 1995 revised
version of the FCI. It can be seen that choices involv-
ing the impetus theory were essentially unchanged in
the 1995 version. Although students make a selection
on a multiple-choice question based on many possi-
ble reasons, and applying the impetus naive theory is
only one of them, the choices identified by Hestenes
et al. indicating the application of the naive impetus
theory were validated through extensive interviews
(Hallouin and Hestenes, 1985a,b). Because we con-
sider applying the naive impetus theory to be a con-
tinuous variable, rather than yes or no, we base our
analysis on students’ responses to a group of items to
establish the degree of consistency of student appli-
cation of the naive impetus theory.

Definition of Independent and Dependent Variables

According to our focal research questions, the
dependent variable is the degree of students applying
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Table I. Correspondence Between the 1992 and 1995 FCI Versions on
Distracters Indicating the Impetus Theory

1995 Version 1992 Version ..
Prediction/
Item Choices Item  Choices Familiarity ~ Explanation
Q7 A,D Q4 A,D Familiar Prediction
Q13 A,B,C Q5 A,B,C Familiar Explanation
Q8 C,D,E Q6 C,D,E Familiar Prediction
Q10 B,C,D Q8 B,C,D Familiar Prediction
Q11 B,C Q9 B,C Familiar Explanation
Q6 A Q10 A Unfamiliar Prediction
Q12 C E Ql6 C,D Unfamiliar Prediction
Q30 B,D,E Q22 B,C,E Familiar Explanation
Q14 E Q23 E Unfamiliar Prediction
Q21 A,D Q24 A,D Unfamiliar Prediction
Q23 A,D,E Q26 A,D,E Unfamiliar Prediction
Q24 C,E Q27 C,E Unfamiliar Prediction
Q27 B,D,E Q29 B,D,E Familiar Prediction

the impetus theory in answering a group of items.
Because each question is scored as applying the im-
petus theory (coded as 1) or not applying the impe-
tus theory (coded as 0) according to Hestenes et al.
(1992/1995), the mean for each item over all the stu-
dents is the percentage of students applying the im-
petus theory to the item. This percentage represents
the consistency among students in applying the im-
petus theory. Similarly, the mean for each student
over a group of items is the percentage of items to
which a student has applied the naive impetus theory.
This percentage represents the consistency within a
student in applying the impetus theory. Accordingly,
the mean over both students and a group of items
represents the degree of students applying the impe-
tus theory in answering a group of items; this mean
defines the dependent variable in our study. Differ-
ent ways of forming a group of items by indepen-
dent variables (to be described next) result in differ-
ent dependent variables (e.g. the dependent variable
for prediction questions).

The independent variables involved are item
context familiarity, item requirement for prediction
or explanation, and students’ academic achievement.
The criterion used to determine whether or not a
question is familiar to students or not is whether or
not the question involves an everyday context that
most students, not necessarily every student, have
likely experienced. For example, ice or street hockey
should be reasonably physically familiar to many
US students, but experiences with rocket movement
would quite rare. The criterion used to determine
if a question requires prediction or explanation is
whether or not a question asks students to predict
paths of the movement of an object (e.g. the path of

a hockey puck after being hit) or to identify forces
involved in a movement (e.g. identifying forces on a
golf ball on its way up). The classification of questions
by the above two independent variables, familiarity
and prediction/explanation, are presented in columns
5 and 6 of Table I, as well as at the end of each item
in the Appendix. Finally, the independent variable
of student academic achievement was defined by stu-
dents’ final physics course grades (i.e. A, B, C, D,
and F).

Data Analysis

Because the central issue of this study is about
the consistency of students’ naive conceptions when
they cannot answer the questions correctly, we
had to exclude those correct responses by coding
them as missing. Henceforth, we only consider those
incorrect responses. To help understand the distribu-
tion among students who answered questions cor-
rectly, students who answered the questions incor-
rectly by choosing naive impetus theory distracters,
and students who answered the questions incorrectly
by choosing other distracters, Table II presents the
frequencies of students in each of the categories ar-
ranged by student course grade. From Table II, we
see that overall students with better course grades
are more likely to answer the questions correctly.
However, for those students who did not answer the
questions correctly, course grade does not seem to
matter in likelihood of selecting the impetus theory
choices. For Questions 11, 13, and 30, a large number
of students answered them incorrectly by selecting
the impetus theory choices, regardless of their course
grades.
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Table II. Frequency Distribution of Students Who Answered
Questions Correctly, Incorrectly with Impetus Choices, and
Incorrectly with Other Wrong Choices by Course Grade

Course # Correct # Incorrect: # Incorrect: other
Item grade (%) impetus (%) choices (%)

Q6 AB  223(87.8)  23(9.1) 8 (3.1)
C 187 (81.7)  32(13.9) 10 (4.4)
D.,F  66(79.5) 14 (16.9) 3(3.6)
Q7 A.B  207(8L5)  11(43) 36 (14.2)
C 172 (75.1)  25(10.9) 32 (14.0)
D.,F  56(67.5)  10(12.0) 17 (20.5)
Q8 A,B 199 (783) 37 (14.6) 18 (7.1)
C 150 (65.5)  51(22.3) 28 (12.2)
D,F  53(63.9) 20(24.1) 10 (12.0)
Q10 A,B  214(843)  30(11.8) 10 (3.9)
C 134 (585) 73 (3L.9) 22 (9.6)
D.F  59(71.1)  21(25.3) 3(3.6)
QI  AB  88(34.6) 120(47.3) 46 (18.1)
C 45(19.7) 142 (62.0) 42 (18.3)
D,F  18(2L7)  50(60.2) 15 (18.1)
Q12 AB  216(850) 37(14.6) 1(4)
C 161(70.3)  67(29.3) 1(4)
D.F  63(759)  20(24.1) 0 (0)
Q13 AB  120(472) 134(52.8) 0 (0)
C 58(25.3) 171 (74.7) 0 (0)
D,F  20(24.1)  63(75.9) 0 (0)
Q14 AB  182(71.7) 0 (0) 72 (28.3)
C 119 (52.0) 0 (0) 110 (48.0)
D.F  46(55.4) 0 (0) 37 (44.6)
Q21  AB  141(555)  38(15.0) 75 (29.5)
C 94 (41.0) 64 (27.9) 71 (31.1)
D,F  43(51.8) 15(18.1) 25(30.1)
Q23 AB  145(57.1)  68(26.8) 41 (16.1)
C 98 (43.0)  82(36.0) 48 (21.0)
D,F  39(47.0)  22(26.5) 22 (26.5)
Q24 AB  22(874)  26(102) 6(2.4)
C 175 (76.4) 43 (18.8) 11 (4.8)
D,F  66(795  15(18.1) 2(2.4)
Q27 AB  197(77.6)  21(82) 36 (14.2)
C 65(78.4)  31(13.6) 44(19.3)
D,F  153(67.1) 9(10.8) 9(10.8)
Q30 AB  95(374) 156(63.6) 0 (0)
C 62 (27.6) 161 (71.5) 2(.9)
D.F  17(205) 64 (77.1) 2(2.4)

We conducted two-way mixed designs
Analysis of Variance (ANOVA) to test the effects of
students’ academic achievements (between-subject
variable), item characteristics of familiarity, and
prediction or explanation nature (within-subject
variables), and the interaction between academic
achievement and item -characteristics. We con-
ducted two separate 2-way ANOV As, one for each
of familiarity and prediction/explanation. Given
the sample sizes to be adequate (see descriptive
statistics below) and thus the statistical power to
be sufficient, we used .05 as the alpha level for
making statistical decisions. Because each 2-way
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Table III. Frequency Distribution by Students’ Course Grades

Course Valid
grade Frequency Percentage percentage
A 72 11.7 12.7

B 182 29.6 322

C 229 37.3 40.5

D 40 6.5 7.1

F 43 7.0 7.6
Missing 48 7.8

Total 614

ANOVA addressed a different research question,
we did not need to adjust the inflation of type I
error caused by multiple ANOV As. The data sample
used in this study was part of a larger data set of
1,313 students using both paper-and-pencil and web
before and after instruction (Cole and Maclsaac,
2001, Maclsaac, Cole, and Cole, 2002); they can
reasonably be considered to be representative of
all large lecture calculus-based introductory physics
course registrants at most large research universities.
Table III presents the frequency statistics regarding
the students’ final course grades. It can be seen
that although the sample is slightly skewed toward
the more able students, overall the departure from
normality is acceptable. Thus, we considered that
the assumptions of representative-ness, normality,
and homogeneity of variance were met. Further, be-
cause students completed the FCI paper and pencil
survey independently, the assumption of observation
independence for 2-way ANOVA was also met. The
assumption for sphericity will be discussed in the
Results section. Step-wise regression analysis was
also conducted to simultaneously analyze effects of
all the factors on the degree of students applying the
naive impetus theory.

RESULTS
Descriptive Statistics

Table IV presents the descriptive statistics of
students who selected distracters of the impetus the-
ory. Because we coded selecting impetus theory
choices or not as 1 or 0, the means in Table IV
can be interpreted as percentages of students who
selected the impetus theory distracters of particular
questions. It is interesting to see that no students of
any academic achievements who answered question
14 incorrectly selected distracters of the impetus the-
ory, and all students of all academic achievements
who answered the question 13 incorrectly selected
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Table IV. Descriptive Statistics of Students Who Answered
the Questions Incorrectly by Selecting Distracters of the
Impetus Theory Arranged by Course Grade

Course Mean/%
Item grade impetus Std. n
Q6 A B 74 445 31
C .76 431 42
D,F .82 393 17
Q7 A,B 23 428 47
C 44 501 57
D,F 37 492 27
Q8 A B .67 A74 55
C .65 481 79
D,F .67 A79 30
Q10 A,B 5 439 40
C 77 424 95
D,F .87 338 24
Q11 A, B 72 452 166
C 77 424 184
D,F 77 425 65
Q12 A,B 97 162 38
C .99 121 68
D,F 1.0 .000 20
Q13 A, B 1.0 .000 134
C 1.0 .000 171
D,F 1.0 .000 63
Q14 A,B .0 .000 72
C .0 .000 110
D,F .0 .000 37
Q21 A,B 34 475 113
C A7 501 135
D,F .38 490 40
Q23 A,B .62 .506 109
C .63 484 130
D,F .59 487 44
Q24 AB .81 397 32
C .80 407 54
D,F .88 332 17
Q27 A,B 37 487 57
C 41 496 75
D,F .50 514 18
Q30 A,B 1.0 .000 156
C .99 110 163
D,F 97 173 66

distracters of the impetus theory. The most popu-
lar impetus theory distracters were chosen for items
12 and 30 by almost 100% of students of all academic
achievements. The sample sizes of different academic
achievement groups for all the items ranged from 17
(D and F students for items 6 and 24) to 184 (C stu-
dents for item 11).

Table V presents the descriptive statistics of the
dependent variables. We see that, among those stu-
dents who answered the 13 items incorrectly, the de-
grees of consistency over different groups of items
varied greatly from the highest (.87) for explanation
questions to the lowest (.48) for prediction and un-
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Table V. Descriptive Statistics of Dependent

Variables
Item type n Mean Std
Prediction 527 48 .34
Explanation 544 .87 28
Familiar 566 .76 29
Unfamiliar 498 48 .38
Overall 587 .64 28

familiar questions. We also see that the consistency
over all students and all the items, the overall consis-
tency, is .64, indicating that students applied both the
naive impetus theory and knowledge-in-pieces, but
slightly more students applied the naive impetus the-
ory than knowledge-in-pieces.

Effect of Item Familiarity

In order to test the effect of item familiarity on
percentage of students selecting distracters from the
impetus theory, we combined the items that were
classified as “familiar” in Table I into one new de-
pendent variable with the mean scores of individ-
ual students as its values. Similarly, we combined
the items that were classified as “unfamiliar” in
Table I into one new dependent variable with the
means scores of individual students as its values. A
2-way mixed design ANOVA (3 x 2) was conducted
with student course grade as the between-subject
variable and “familiar” and “unfamiliar” as within-
subject variables. The Mauchly’s test for sphericity
in the two-way ANOVA with repeated measures
showed that the equal covariance assumption be-
tween the two variables of repeated measures was
met. Thus, it was not necessary to adjust the degree of
freedom in our interpretation of the 2-way ANOVA
results. Table VI presents the ANOV A results. It can
be seen that there was a significant effect of item

Table VI. 2-Way ANOVA with Repeated Measures for the
Effects of Course Grade and Item Familiarity for Students not
Selecting Correct FCI Responses

Partial eta

Source df MS F P squared
Between-subject
Grade 2027 218 115 .010
Error 437 012
Within-subject
Familiarity 1 1635 189.46 .000* 302
Familiarity x 2 029 3.39  .035* .015
grade
Error 437  0.09
*p < .05.
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Table VII. Confidence Intervals of Means of Students Selecting
Distracters of the Impetus Theory on Items of Different

Familiarity
95% Confidence
interval
Course Std.  Lower  Upper
grade Familiarity Mean error bound  bound
AorB Familiar 739 .020 .699 778
Unfamiliar 456 .028 401 511
C Familiar 771 .019 734 .808
Unfamiliar 531 .026 479 .583
DorF Familiar 819 .032 756 .882
Unfamiliar 427 .045 .339 516

familiarity [F(1,437) = 189.46, p < .05, 17 = 0.30].
There was also a statistically significant interaction
effect between the course grade and item familiarity
[F(2,437) =339 p < .05, 7 = 0.015]. Because the
effect size for this interaction is only 1.5% variance
(7 = 0.015), we consider this interaction effect to
be practically insignificant. The effect of stu-
dent course grade was not statistically significant
(p > .05).

Table VII presents the confidence intervals for
the combinations of course grade and item familiar-
ity. It can be seen that the confidence intervals for
familiar items and unfamiliar items do not overlap
for all course grades, indicating a main effect of item
familiarity.

Effect of Item Explanation or Prediction

In order to test the effect of item requirement
for prediction or explanation on percentage of stu-
dents selecting distracters of the impetus theory, we
combined the items that were classified as “predic-
tion” in Table I into one new dependent variable
with the mean scores of individual students as its
values. Similarly, we combined the items that were
classified as “explanation” in Table I into one new
dependent variable with the mean scores of indi-
vidual students as its values. A 2-way mixed design
ANOVA (3 x 2) was conducted with student course
grade as the between-subject variable and “predic-
tion” and “explanation” as the within-subject vari-
able. The Mauchly’s test for sphericity in the 2-way
ANOVA with repeated measures showed that the
equal covariance assumption between the two vari-
ables of repeated measures was met. Thus, we did
not need to adjust the degree of freedom in our in-
terpretation of the 2-way ANOVA results presented
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Table VIII. 2-Way ANOVA with Repeated Measures for the
Effects of Course Grade and Item Requirement for Explana-
tion vs. Prediction for Students not Answering the FCI Items

Correctly
Partial eta
Source df MS F P squared
Between-subject
Grade 2 011 1.1 .333 .005
Error 444 0.10

Within-subject

Item requirement 1 2892 385.3 .000* 465

Item requirement x 2 016 22 .117 .010
grade
Error 444 0.08
*p < .05.

in Table VIII. It can be seen that there was a sta-
tistically significant effect of item requirement for
prediction or explanation [F(1,444) =385.28, p <
.05, 17 = 0.465]. There was no statistically signifi-
cant main effect of course grade, nor was there
a statistically significant interaction effect between
course grade and item requirement for prediction or
explanation (p > .05).

Table IX presents the confidence intervals for
the items requiring prediction and explanation. Be-
cause the two confidence intervals do not overlap,
thus there is a significant difference between the two
means. Statistically there are more students selecting
distracters of the impetus theory on items requiring
explanation (M = .89) than items requiring predic-
tion (M = .49).

Effects on Overall Consistency

Table X presents the correlation coefficients
between various dependent variables. It can be
seen that a significant correlation exists between
all pairs of the dependent variables. A significant
correlation between two dependent variables indi-
cates that students who apply the naive impetus

Table IX. Confidence Intervals of Means of Students
Selecting Distracters of the Impetus Theory on Items
Requiring Prediction or Explanation

95% Confidence

interval
Item Std.  Lower Upper
requirement Mean error bound bound
Prediction 487 .017 453 522
Explanation .886 .014 .860 913
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Table X. Correlation Coefficients Between Dependent Variables

Variable Prediction

Explanation

Familiar Unfamiliar

Explanation
Familiar
Unfamiliar

Overall consistency

164%* (n = 484)
428** (n = 506)
885%* (n = 498)
803** (n = 527)

803%* (n = 544)
187% (n = 467)
678% (n = 544)

188% (n = 477)

827 (n=566)  .722** (n = 498)

*p < .05.
**p < .01.

theory to one groups of questions (e.g. Familiar
Questions) are also likely to apply the theory to
the other group of questions (e.g. Prediction Ques-
tions). It can also be seen that the Overall Con-
sistency, i.e. the mean of all items for each stu-
dent, is significantly correlated with other dependent
variables (e.g. Familiar Questions, Explanation
Questions, etc.).

In order to examine the simultaneous effects of
all the above factors (Familiar, Unfamiliar, Predic-
tion, and Explanation) as well as the student course
grade on the overall consistency, a step-wise linear
regression was conducted. The results are presented
in Table XI. From Table XI we see that all the vari-
ables entered into the regression equation with the
exception of Course Grade, which means that those
variables all significantly contribute to the overall
consistency statistically. Those variables together ex-
plained 93.4% of total variance (R?> = .934). How-
ever, those variables differ in their degrees of con-
tribution to the prediction of consistency. Familiar
items contribute most (with a beta of .5) to the consis-
tency of applying the impetus model, with unfamiliar
and prediction items contribute similarly (with a beta
of .3), and explanation items contribute least (with a
beta of .1). This indicates that the overall degree of
consistency depends mostly on item familiarity (the
more familiar the higher the degree), and item pre-
diction (the more prediction involved, the higher the
degree). Course grade does not have a significant ef-
fect in predicting the overall degree of consistency in
student application of the impetus model.

Table XI. Regression on Degree of Overall Consistency
by Various Factors

Variable B Std. error  Beta t
Prediction 211 .023 310 9.171*
Familiar 453 .023 497 19.924**
Unfamiliar 194 .019 322 10.271*
Explanation .098 .019 117 5.254**
(Constant) .028 .010 2.769**
*p < .01

DISCUSSION

Answering our research questions, we conclude
the following:

1. Is there a statistically significant difference in
percentages of students applying the impetus
theory between items that require prediction
and items that require explanation? The find-
ings presented above show that there is a sta-
tistically significant difference in percentages
of students applying the impetus theory be-
tween items requiring prediction and items
requiring explanation. Significantly more stu-
dents apply the impetus theory on items re-
quiring explanation than on items requiring
prediction.

2. Is there a statistically significant difference in
percentages of students applying the impetus
theory between items that are familiar to them
than items that are unfamiliar to them? The
findings presented above show that there is
a statistically significant difference in percent-
ages of students applying the impetus theory
between familiar items and unfamiliar items.
Significantly more students apply the impetus
theory on familiar items than on unfamiliar
items.

3. Is there a statistically significant interaction ef-
fect between student academic achievements
and the above independent variables (i.e. item
familiarity, and item explanation/prediction
nature)? The findings presented above show
that student academic achievements do not
interact with any of the variables.

4. Taking into consideration all the variables
simultaneously, which variables significantly
contribute to the percentage of overall con-
sistency by students applying the naive im-
petus theory? The findings presented above
show that both item familiarity and item pre-
diction/explanation significantly contribute to
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the overall consistency of students applying
the naive impetus theory. However, student
course grades do not significantly contribute
to this overall consistency.

How can we make sense of the above conclu-
sions? It is clear from our findings that applying men-
tal models/naive theories or p-prims/knowledge-in-
pieces is a matter of degree. Under no conditions
do students exclusively apply a mental model or a p-
prim. This is consistent with previous studies, such
as those by Anderson ef al. (1992), and Mazens and
Lautrey (2003). Because the purpose of this study is
to evaluate factors contributing to the degree of stu-
dents applying a naive theory, or a mental model,
p-prim, and knowledge-in-pieces, it is necessary to
consider all the factors at the same time.

Keep in mind that our analysis excluded the cor-
rect responses made by students that are consistent
with Newtonian theories. It is reasonable to assume
that at least some students who did not answer the
FCI questions correctly hold the impetus naive the-
ory. Item familiarity affects significantly the percent-
ages of students applying the naive impetus theory as
concluded above. This could be explained by the fact
that generating mental models depends on students’
personal experiences. If an item is familiar and easy,
students are more likely to be able to generate spe-
cific mental models to answer the question. Table X
also indicates that Explanation has a very high cor-
relation with Familiar Questions, which suggests that
familiar questions are more likely to require explana-
tion, thus resulting in higher degrees of consistency.
On the other hand, if the item is less familiar, stu-
dents may be less likely to apply their personal expe-
riences to generate mental models, or may be more
likely to resort to random guessing, which decreases
the overall percentage of consistency in applying the
naive impetus theory.

If a question requires explanation, because the
impetus theory is a coherent system, the impetus
theory gives those students ability to generate an-
swers consistently due to the requirement of a the-
ory to explain (Brewer, 1999; Schwitzgebel, 1999).
This accounts for a significantly higher percentage of
students applying the impetus theory to explanation
items. If a question requires students to make predic-
tions, then students need to generate a mental model
from a theory to make a prediction (Johnson-Laird,
1983). Because mental models are generated on the
spot and different students may use different naive
theories, mental models are more likely to vary from
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student to student and from problem task to prob-
lem task. Therefore, questions requiring students to
predict have more potential to produce inconsistency
or variation than questions requiring students to ex-
plain. This explains why prediction questions con-
tribute most significantly to the overall percentage
of students applying the impetus theory in the re-
gression analysis. Explanation only contributes mini-
mally (although statistically significantly) to the over-
all percentage in the regression because students only
need to apply a theory such as the impetus theory to
explain, which potentially results in more consistency
and less variation or variance.

Student course grade did not contribute signif-
icantly to the percentages of students applying the
naive impetus theory. This also suggests that, if a stu-
dent answered a FCI question incorrectly, no mat-
ter what the student’s grade is, the student may go
through a same mental process involving the impetus
theory or knowledge-in-pieces.

The above mental process assumes that students
have a desire to explain using a theory and to predict
using a mental model, which is consistent with views
of mental models (Johnson-Laird, 1983; Gentner and
Stevens, 1983; Vosniadou, 1992, 1994; Vosniadou
and Brewer, 1992) and theory theory (Brewer and
Samarapungavan, 1991; Carey, 1985; Gopnik and
Meltzoff, 1997; Schwitzgebel 1999; Wellman, 1990).
However, the desire to explain and predict may be
moderated by other factors such as item familiar-
ity, which provides a potential for students to apply
p-prims or knowledge-in-pieces. Thus, naive the-
ories, mental models, p-prims, and knowledge-in-
pieces are closely related in a student’s mental
process of answering a question.

The above findings suggest that we need to con-
ceptualize naive theories, mental models, p-prims,
and knowledge-in-pieces into a coherent theoretical
framework. From a pedagogical point view, we be-
lieve that as a goal of science education, we must pro-
mote the current consensus models or the scientific
theories, which is promoted by some researchers (e.g.
Duit and Treagust, 2003; Gilbert, 1999; Schwitzgebel,
1999). However, achieving that goal may require
students to develop modeling abilities in applying
their own theories — although sometimes these may
be naive theories or less complete theories than the
current consensus models in science. We may con-
ceptualize a hierarchy from p-prims to naive mental
models or theories to scientific consensus models
or theories, and it is the responsibility of science
teachers to help students make the progression from
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p-prims to appropriate scientific consensus models.
This conceptualization is consistent with the con-
structivist view on knowledge in transition (Smith ez
al., 1993). Smith et al. argue that knowledge-in-pieces
and scientific theories share certain functionality and
should be viewed in continuity and in a systemic
framework. Attempting to “unlearn” student naive
conceptions may be neither plausible nor even
desirable.

The above conceptualization is also consistent
with the conceptual change views put forward in the
literature. For example, Linder (1993) argues that
conceptual change involves changes in understand-
ing of relations between constructs and their contexts
(dealing with p-prims); Ebenezer and Gaskell (1995),
Marton and Booth (1997), as well as Liu (2004) pro-
moted the notion of relational conceptual change
that is similar to Linder’s. Other conceptual change
views (see reviews by Duit and Treagust, 2003; Tyson
et al., 1997) promote such theory change. Whatever
conceptual change view is to be adopted, we must
incorporate both p-prims and students’ naive theo-
ries. The facet clusters that Minstrell (1991, 2001)
and colleagues have been developing over the past
few years appear to be based on the hierarchical con-
tinuum from p-prims to scientific consensus models.
Of course, the continuum we suggest here is much
broader than what facet clusters imply. We perceive
that each major science concept entails student pro-
gression in understanding from multiple p-prims to
multiple naive mental models with various degrees
of power in making consistent predictions and ex-
planation, and onwards to the scientific theory that
has the most power in making most consistent pre-
dictions and explanation. Thus, we perceive a contin-
uous trajectory of student conceptual development
in science concepts starting with pieces of ideas and
ending with scientific theories as consensus models.
If we can map out such a trajectory for each of the
major concepts learned in science curricula, we will
be in a much stronger position to develop instruction
and assessment that are much more appropriate and
relevant to student learning.

APPENDIX: FCI QUESTIONS USED (ITEM
CLASSIFICATIONS ARE INDICATED AT THE
END OF EACH ITEM IN ITALIC)

Q6. Which path in the figure at right would the
ball most closely follow after it exits the channel

at “r” and moves across the frictionless table top?
[Unfamiliar, Prediction]
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Q7. A steel ball is attached to a string and is
swung in a circular path in a horizontal plane as il-
lustrated in the accompanying figure.

At the point P indicated in the figure, the string
suddenly breaks near the ball.

If these events are observed from directly above
as in the figure, which path would the ball most
closely follow after the string breaks? [Familiar, Pre-
diction)
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USE THE STATEMENT AND FIGURE BE-
LOW TO ANSWER THE NEXT FOUR QUES-
TIONS (8 THROUGH 11)

The figure below depicts a hockey puck sliding
with constant speed vy in a straight line from point
“a” to point “b” on a frictionless horizontal surface.
Forces exerted by the air are negligible. You are
looking down on the puck. When the puck reaches
point “b,” it receives a swift horizontal kick in the di-
rection of the heavy print arrow. Had the puck been
at rest at point “b,” then the kick would have set the
puck in horizontal motion with a speed vy in the di-
rection of the kick.

a

b
e e @
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Q8. Which of the paths below would the puck
most closely follow after receiving the kick? [Famil-
iar, Prediction]

®) ® © o ®

Q10. Along the frictionless path you have cho-
sen in question 8, the speed of the puck after receiv-
ing the kick:

(A) is constant.

(B) continuously increase.

(C) continuously decreases.

(D) increases for a while and decreases there-
after.

(E) is constant for a while and decreases there-
after.

[Familiar, Prediction)]

Q11. Along the frictionless path you have cho-
sen in question 8, the main force(s) acting on the
puck after receiving the kick is (are):

(A) a downward force of gravity.

(B) a downward force of gravity, and a horizon-
tal force in the direction of motion.

(C) a downward force of gravity, an upward
force exerted by the surface, and a horizon-
tal force in the direction of motion.

(D) a downward force of gravity and an upward
force exerted by the surface.

(E) none. (No forces act on the puck).

[Familiar, Explanation]

Q12. A ball is fired by a cannon from the top of a
cliff as shown in the figure below. Which of the paths
would the cannon ball most closely follow? [ Unfamil-
iar, Prediction]
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Q13. A boy throws a steel ball straight up. Con-
sider the motion of the ball only after it has left the
boy’s hand but before it touches the ground, and as-
sume that forces exerted by the air are negligible.
For these conditions, the force(s) acting on the ball
is (are):

(A) a downward force of gravity along with a
steadily decreasing upward force.

(B) a steadily decreasing upward force from
the moment it leaves the boy’s hand un-
til it reaches its highest point; on the way
down there is a steadily increasing down-
ward force of gravity as the object gets
closer to the earth.

(C) an almost constant downward force of grav-
ity along with an upward force that steadily
decreases until the ball reaches its highest
point; on the way down there is only a con-
stant downward force of gravity.

(D) an almost constant downward force of grav-
ity only.

(E) none of the above. The ball falls back to
ground because of its natural tendency to
rest on the surface of the earth.

[Familiar, Explanation]

Q14. A bowling ball accidentally falls out of the
cargo bay of an airliner as it flies along in a horizontal
direction.

As observed by a person standing on the ground
and viewing the plane as in the figure at right, which
path would the bowling ball most closely follow after
leaving the airplane? [Unfamiliar, Prediction)]
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USE THE STATEMENT AND FIGURE BE-
LOW TO ANSWER THE NEXT FOUR QUES-
TIONS (21 THROUGH 24).

A rocket drifts sideways in outer space from

point “a” to point “b” as shown below. The rocket is
subject to no outside forces. Starting at position “b,”
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the rocket’s engine is turned on and produces a con-
stant thrust (force on the rocket) at right angles to
the line “ab.” The constant thrust is maintained until
the rocket reaches a point “c” in space.

"

e A e

Q21. Which of the paths below best represents
the path of the rocket between points “b” and “c”?
[Unfamiliar, Prediction]
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Q23. At point “c” the rocket’s engine is turned
off and the thrust immediately drops to zero. Which
of the paths below will the rocket follow beyond
point “c”? [Unfamiliar, Prediction]
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Q24. Beyond position “c” the speed of the
rocket is:

(A) constant.

(B) continuously increasing.

(C) continuously decreasing.

(D) increasing for a while and constant there-
after.

(E) constant for a while and decreasing there-
after.

[Unfamiliar, Prediction]

Q27. A woman exerts a constant horizontal
force on a large box. As a result, the box moves
across a horizontal floor at a constant speed “v(”.
If the woman suddenly stops applying a horizontal
force to the box, then the box will:

(A) immediately come to a stop;

(B) continue moving at a constant speed for a
while and then slow to a stop.

(C) immediately start slowing to a stop.

(D) continue at a constant speed.
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(E) increase its speed for a while and then start
slowing to a stop.

[Familiar, Prediction)]

Q30. Despite a very strong wind, a tennis player
manages to hit a tennis ball with her racquet so that
the ball passes over the net and lands in her oppo-
nent’s court.

Consider the following forces:

1. A downward force of gravity.
2. A force by the “hit.”
3. A force exerted by the air.

Which of the above forces is (are) acting on the
tennis ball after it has left contact with the racquet
and before it touches the ground?

(A) 1 only.
(B) 1and 2.
(C) 1 and 3.
(D) 2 and3.
(E) 1,2,and 3.

[Familiar, Explanation]
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