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The direction and magnitude of electric field due to distribution of charges can be calculated for different surfaces. The question is to estimate the charges knowing the 3D electric field pattern. Gauss’ law relates pattern of electric field over a closed surface to the amount of charge inside the closed surface. By knowing the electric field due to charges on outside the surface, and expressing the electric field on a surface quantitatively in terms of electric flux, the charge inside the closed surface can be obtained. Gauss’ Law is the relation between the point charges inside and outside a closed surface and is given by 
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and can be derived from Coulomb’s law. The magnitude of electric field at all locations on a sphere is y Coulomb’s law is given by 
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 , where q1 and q2 are charges in coulombs, r is in meters and  0 is the permittivity. 

By adding up the electric fields due to all the individual electric charges q on a closed surface, one can use Gauss’ law to find the amount and sign of the charge inside the closed surface. Electric flux provides a quantitative relation between the amount and direction of electric field over an entire surface. 
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Electric field is considered positive when it leaves the surface and negative when it enters the surface and zero when it does not pierce the surface. One can relate the direction and magnitude of electric flux to the angle the electric field 
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 makes with the surface.

Field Due to a single point charge in space A point charge 
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 creates an electric field that goes radially out from the point throughout space.  
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 The field interacts with another charge 
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. This is nothing but Coulomb’s law of interaction between two charges. The electric field is not absorbed by space and can come out from a positive charge and end at a negative charge. This is analogous to flow of water from a sink to a drain. The charge is conserved and lost on the way!! 

Electric field due to a point inside a hollow sphere 
A  Next, let us consider an enclosed point charge P near the inside surface of the hollow sphere. The charges to the upper left of the location P on the surface are closer to P. Therefore, each exerts a greater force to pull the charge towards the surface. However, there are many more chargesfarther away from P and this results in 
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pointing to the right and downwards
 charges farther away from P and this results in 
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pointing to the right and downwards towards the surface. 
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and the greater charge below balances the greater force per unit charge. Charge on the inner surface is closer but less is effective. According to Coulomb’s law, 
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 1/r2, i.e. electric field due to the charge falls off rapidly as 1/r2 and results in the forces to the right and left cancelling each other out, leading to a net zero charge inside the sphere. At equilibrium reached in about 10-18 s, mobile charges rearrange to give an internal charge of zero with an energy following a 1/r dependence. 
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Surface charge on the sphere is uniform and is 
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 to Surface area and spreads evenly on the surface. The amount of electric field depends only on the amount of charge inside that area and not on the area. This implies that 
[image: image17.wmf]E

r

 coming out of the areas is the same and the electric field created by the charge is present throughout the space at all times. This implies Einside = 0, i.e. the electric field due to evenly spread charges on the surface is zero inside the shell because the only forces acting on the charge inside are due to charges on the surface of the sphere or outside the metal sphere. 

B. If we considered the charge enclosed in a sphere with a thick wall, (a hollow sphere) as shown in Fig III, the electric field coming out of the inner sphere will be the same as field coming out of the outer sphere. This is essential as the charge has to be conserved. The flow of 


[image: image18]FIG. III

charge can be considered analogous to flow of water or fluidity, which depends on how much water comes out of the  spout and how much goes into the drain and it is not dependent on the diameter of the pipe. Similarly, the charge or electric field coming out of the outer surface of the spherical object is the same as coming out of the inner sphere and is not dependent upon the size of the sphere. It will be true of any shape, however a spherical surface is considered to make the math easier.
For a mathematical description, Fig IVa and IVb are used to pictorially depict charge distribution on a surface due to a charge in a hollow sphere.
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 Electric flux on a surface
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, where 
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 is a small area, 
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the electric field and 
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is the unit vector. This definition takes into account the direction and magnitude of the electric field and the surface area. Electric field can be expressed as
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, when the surface is divided into infinitesimal areas A. A clearer expression to express the electric flux over the surface is
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A spherical surface instead of any random shape is used to make the math easier and doesn’t represent a spherical metallic surface. 
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. The vector dot product of vectors 
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because the magnitude of 
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is 1. When the field points straight out of the surface as shown in Fig. IVb, (i.e. when the
[image: image33.wmf]r

and

E

)

®

are // to one another and are 
[image: image34.wmf]^

 to the surface,
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at all locations of the surface. Total field over the surface is
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. The surface area for the spherical surface is 4
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, total field on the surface is
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. Since the total charge is conserved, the charge on the surface is equal to charge inside, i.e.
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Charge flux is  
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The dynamic equilibrium inside a conductor is such that the charge is not defined over the entire space, but is a function of position in the system and time. To describe charge movement, let us consider q (space, time) or q(r, t), where r is the position in the system or q(x, y, z, t). At equilibrium the charge is on the outer sphere and inside q = 0. Electric field can thus be expressed 
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(x, y, z, t). Consider a charge inside a conductor when equilibrium is not yet reached. On a time scale of 10-18 s, there is non-uniform distribution of charge. Fig. I represents the 2D surface of the 3D space in which the charge is enclosed. . The surface is divided into infinitesimally small sections and each is labeled as dA. The magnitude = area of cross-section whose direction is perpendicular to the section and pointing outward.

A point in space is sufficiently large that it will have many charges inside the enclosed space. Since the charge is conserved, and we are assuming continuity of charge, equations of continuity can be applied. We can then use Gauss-Divergence theorem as there is continuity of charge. The local density of charge Q is 
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(1)

where Q(t) is the charge in the whole space. Q is conserved and varies as a function of t when Q moves across the surface boundary S that defines the volume of the sphere. 

At each point in the volume, the charge density can be defined as 
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 . This vector points in the direction of flow of charge, away from the center of the sphere and has units of charge per unit area per unit time (Cm-2s-1). The amount of charge Q leaving the volume per unit time must equal the surface integral of 
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 over the surface, i.e.
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(2)

Surface integral in equation 2 is converted into the volume integral using the Gauss-Divergence theorem, such that 
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Comparing equations 3 and 4, 
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Equation 5 represents fluidity of charge. Gauss’ law can be written as 
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, i.e. electric flux through any closed surface is proportional to the amount of charge contained within the surface. 
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 is zero, hence 
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 and charge on the surface is Q.
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D. Electric field due to a point inside a solid sphere of charge

A solid sphere of charge can be considered as being made up of several hollow spheres and again we will find that the electric field inside is zero. The charges on the outside of any hollow sphere do not contribute to the electric field, but the charges inside a hollow sphere would contribute to the field at the surface of the hollow sphere. Hence the electric field due to a point charge located at the center of a solid sphere will result in surface of the solid sphere being charged. Effectively it is a hollow sphere similar to the case discussed in B above. 

E. Electric field due to a point inside and outside a hollow sphere of charge

Consider a hollow sphere of radius R, carrying a uniform charge of Q. In finding the potential difference VA-VC in going from a location C outside the sphere to a location A inside the sphere, the first step is to find the electric field along a path from location C to location B near the surface. This electric field is like that of a point charge and then there is a region where the electric field is zero inside the hollow charged sphere. The field outside the sphere is exactly the same as that of a point charge located at the center of the sphere. 
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The potentials at B & C are 
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The potential VA –VB = 0, because the field inside is zero.

VA –VC = (VA –VB) + (VB –VC)

Hence the potential inside and outside the sphere, VA –VC =
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(A)
This is similar to the situation in a Van de Graff generator, in which a charged conveyor belt delivers a continuous stream of excess charge to the inside of the hollow sphere and carries electrons away from the sphere through a small hole in the sphere. There is an approximately uniform charge Q on the sphere and the Van de Graff can attain very high voltages. The potential difference between the bottom of the conveyor belt and a point inside the metal sphere is approximately the same as expression (A) above. 
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