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One of the first examples texts use to 
illustrate Gauss’ law is to show that the field due to 
a thin spherical shell of charge is zero everywhere 
inside the shell and equivalent to the field from a 
point charge everywhere outside. Authors also 
qualitatively argue that the field should be zero, but 
the result is rarely shown with direct integration. 
This document shows how to directly integrate 
Coulomb’s law to get the result described above. 

The diagram at right shows the problem. In 
general, the contribution to the field at the position 
represented by   
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The field at some point on the z-axis due to any small section of the shell becomes 
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Given the symmetry it seems reasonable to assume that the x- and y-components of the 
field are zero (i.e. zEE z ˆ=

r
), so I’ll focus on the z-component of Ed
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To get the total field to the entire shell, we’ll need to integrate and spherical coordinates 
are likely to be easier than other choices. To do the integral, we’ll need: 

• Definition of charge density:σ ≡ q / A  (and consequentially dq = σdA ) 
• Some spherical coordinates details: 

o dA = R2dφ sinθdθ  and 24 RA π=  
o limits of integration: [ ]πφ 2,0∈ and ],0[ πθ ∈  
o z = Rcosθ  on the surface of the sphere 

• Law of cosines to express  
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Combining these elements: 
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Use some substitutions (ε ≡ z0 /R and u ≡ −cosθ , θθ ddu ][sin= ) to simplify the 
appearance of the integral: 
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Do the integration on φ  to get: 
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The first term inside the brackets also integrates pretty easily: 
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The second term requires integration by parts ( ∫ ∫−= vduuvudv ). If you choose 

dv = [1+ ε2 + 2εu]−3 / 2 du and u = u , then the integral needed to find v is essentially 1I :  
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And then integration by parts gives 
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Combining everything: 
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Evaluating the result (and being careful about the signs of the square root) gives 
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The last step is to show that this answer reduces to what we expect. Before we do, it 
might be helpful to notice that each term inside the brackets is actually quite simple- any 
number (except zero) divided by its absolute value is either one (if the number is 
positive) or negative one (if the number is negative).  



Thin Spherical Shell by Direct Integration 
 

Thin spherical shell integral (David Abbott 6/1/08)  Page 3 
 

Inside the shell 

If we are interested in the field at points inside the shell, Rz >0 , and, since ε ≡ z0 /R, this 

also means that 1<ε . Under these conditions, )1( +ε must be positive and )1( −ε must 
be negative, so  

[ ] 0112
1
1

1
12

22 =−+=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

+
+
+

=
ε

σπ
ε
ε

ε
ε

ε
σπ kkEz  

Outside the shell 

Case 1:  At points outside the shell on the positive z-axis, Rz >0 and 1>ε , and 
both )1( +ε and )1( −ε  are positive so 
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Substituting ε ≡ z0 /R and 24 RA π= back in, this becomes 
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Case 2: At points outside the shell on the negative z-axis, both )1( +ε and )1( −ε  are 
negative and  
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The bottom line is that Case 1 and Case 2 have the same interpretation: outside the shell, 
the electric field points away from the shell with the strength given by Coulomb’s law: 
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 If the reader accepts the original claim from symmetry that the field points only in the z-
direction ( zEE z ˆ=

r
), we have proven what we set out to prove: that the field inside the 

shell is zero and the field outside the shell is identical to the field due a point charge at 
the origin. 


