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Physics and Math are the two subjects that students from high school to college, fear most and a difficult challenge for educators to instill the abstract concepts of each independent subject.  New approaches to teaching by inquiry being developed by the Physics Educational community over the past two decades do much to ease that anxiety by taking most of the math out of the physics curriculum and focus on the core concepts through observation and scientific investigation. The process of hands-on investigation and discovery helps dispel common misconceptions through experience and more thoroughly ingrains the true behavior our physical universe.  Removing the math from the course allows students to devote focus to the core concepts themselves; connecting the established laws and terminology of the physics to observations they make in the world before them.  It keeps students for being distracted or bogged down in the rigor of mathematics.  Many students taking physics courses have not reached a point of mathematical proficiency to solve computations, let alone gain insight from the mathematical behavior of functions.  For many students, a course de-emphasizing the calculations involved in physics is well worthwhile so that the fundamental concepts can be learned and appreciated.   

In teaching Calculus a natural setting for the subject in is the context of Physics. Calculus is the primary tool of precision measurement in teaching a thorough course in both conceptual and computational Physics; the tool invented by Sir Isaac Newton for that very purpose.  

In traditional physics courses, concepts such as kinematics are taught largely by relying on formulas and verbal explanation to describe the behavior of motion.  This approach relies greatly on students’ ability to conceptualize natural laws of motion through their understanding of mathematical functions.  Considering the state of mathematics education in the U.S., this seems an ill-advised assumption.  Students have little or no experience carrying out actual applications of math and have a difficult time conceptualizing more advanced ideas in the subject.  In the same way that physics students are now being engaged through hands-on activities and observations, mathematics students must be engaged in real life observation and interaction with these applications.  

As studies on inquiry-discovery based learning have shown, the general principles of Physics may well be taught largely devoid of mathematics, focusing instead on concrete observation.  However, a more in-depth study cannot exclude fundamental element mathematics in the science; Mathematics, which can also be taught using the same interactive methods.  In fact, a Calculus course in and of itself may best be taught in the contest of physics as the core concepts of fluid motion and instantaneous rates are fundamental to both subjects.  Yet typically, especially introductory courses have not effectively emphasized the connection or taken advantage of the cross-curriculum opportunities elaborating on the two subjects.
Mathematics is the instrument by which we study Physics. The difficulties students face in either subject are similar and can be overcome using similar methods.  
In a presentation to Mathematics Education Research Centre in 1992, David Tall of the University of Warwick pointed our several key difficulties students wrestle with when learning Calculus.  

• difficulties embodied in the language; terms like “limit”, “tends to”, “approaches”, “as small as we please” have powerful colloquial meanings that conflict with the formal concepts,

• the limit process is not performed by simple arithmetic or algebra, infinite

concepts arise and the whole thing becomes “surrounded in mystery”,

• the process of “ a variable getting arbitrarily small” is often interpreted as an “arbitrarily small variable quantity”, implicitly suggesting infinitesimal concepts even when these are not explicitly taught,

• likewise, the idea of “N getting arbitrarily large”, implicitly suggests conceptions of infinite numbers,

• students often have difficulties over whether the limit can actually be reached,

• there is confusion over the passage from finite to infinite, in understanding “what happens at infinity”.

(Source 5, Pg 2)

These are sticking points that are not being resolved through traditional methods of instruction in math class, but rather could be addressed through direct observation in the setting of it application.  These questions and terms are the same ones used in the study of Physics.      
For example, the concept of limit and infinity may be demonstrated by something as simple as a sliding object coming to rest under the influence of a frictional force as time extends to infinity.  Or the idea of values being arbitrarily large or small is often used in Physics when we round or approximate numbers or even discard values of significantly different orders of magnitude.
While one the obstacles teachers wrestle with in teaching physics is that observation in everyday experience often contradicts what is being taught in the classroom, when teaching calculus or any level of mathematics for that matter, students don’t have any observable experience with these notions.  They have no concrete experience to anchor these concepts.  For example, students observe clearly that a ball falls faster than a feather, and yet they are taught that both should fall at the same rate. These preconceived notions must be rectified through direct experience in a carefully designed activity in an inquiry-based course.  Similarly, mathematics needs to be contextualized through application.  Profound concepts of calculus must be manifested through active engagement which provides a physical model for students to engage theses concepts.
David Tall identifies two specific difficulties directly related to this point that students experience when learning Calculus:  

• difficulties in translating real-world problems into calculus formulation,
• restricted mental images of functions,

(Source 5, pg 5)
Tall points out in his presentation that students may chose one of two ways to deal with the conflict between what they study and what they observe in their physical world.  

• reconcile the old and the new by re-constructing a new coherent knowledge structure,

• keep the conflicting elements in separate compartments and never let them be brought simultaneously to the conscious mind.

As the first of these is very difficult, many students (and most teachers!) prefer

latter, separating troublesome theory from the practical methods to solve problems (Source 5, Pg 3)
I propose conducting interactive lessons in math classes to enhance not only students’ conceptual understanding of mathematics, but also the connection between math and science, and an appreciation for math as a tool for measurement.  More specifically, introducing this type of lesson in calculus enhances the conceptual understanding of rates of change and bridges the gap between the math and physics classrooms. 

It is my goal through collaborative effort within my school to develop one or more interdisciplinary projects that emphasize the strong connection between Calculus to Physics through an inquiry based application along the theme of new pedagogy being developed by the physics education community.  

The idea is to engage first year Calculus students in activities that promote deep-rooted, fundamental, conceptual understanding.  The inquiry-based approach to pedagogy devotes itself to that purpose by guiding students to discover truths for themselves and paint the picture in their own minds from the perspective of the artist himself; master of the concept.  This type of instruction can be done equally well in math as in science classes.  It is particularly appropriate to introduce this type of instruction in a calculus/ physics course considering the core themes and overlapping concepts.  The process involves brainstorming ideas, designing a task, breaking into teams to design strategies for measuring and solving the problem, reflective journaling, and revision of experiment.  

“This new approach in pedagogy aims to involve students in similar activities, and the same thinking processes as scientist and mathematician working in the real word; true masters of their craft.” (Source 4, pg2)  

In this paper, I intend to outline one sample lesson of this type.  The lesson will be an inquiry-discovery based learning experience where students will work in teams to later present their findings to the groups as a whole.  A question will be posed to students; they will brainstorm ideas on what and how to measure to resolve the question.  Teams will take actual measurements using tape measures, motion sensors and computer software.
Students will derive the mathematical formulas through the use of calculus that govern the motion of a free falling object.  Students will be required to present a detailed progression of these calculations.  The nature of this project deeply intertwines the language of mathematics with the concepts of physics and the observable phenomena of an object in motion.  This project will further strengthen students’ conceptual understanding of position, velocity and acceleration and the distinctions between them.  This is an important bridge to understanding for students who wish to pursue higher-level mathematics and physics at the college level.  

The lesson is intended for students who have completed, or nearly completed an introductory calculus course and enrolled in a first year physics course, as they will be expected to calculate derivatives and integrals as well as present their calculations using appropriate mathematical language and notation.    

The simple lesson being designed here will focus on the three components of kinematics: position, velocity and acceleration.  While most introductory physics and calculus students will attest that they have a firm understanding of the clear distinction between what is meant by the terms position, velocity and acceleration, pedagogical studies show otherwise.  Students often confuse the terms, and more often have little notion referring to rates of change.  A simple exercise of having students analyze the graphs of their own motion recorded by a motion sensor is a good precursor to the more involved lesson on motion.  
“The use of MBL tools create real-time graphs yield impressive results in helping students develop an intuitive feeling for the meaning if graphs and for the qualitative characteristics of the phenomena they are studying.  For example, a time trace of the position of one’s own body as monitored by an ultrasonic motion detector is unparalleled for learning how the abstraction known as a graph can represent the history of change in a parameter.”  (Source 4, pg 27)
Calculus is an abstract concept in itself.  Beyond students learning to connect the ideas of Physics and mathematical representation to the physical world they observe, calculus challenges them further to comprehend limits and instantaneous change.  Interactive manipulation of objects in motion, taking hands-on measurements to analyze these values follows Arons teaching at the level of calculus.  Even a simple demonstration of a falling object or a ball rolling down an inclined plane serves to demonstrate the fundamental concepts of calculus in the context of physics.  

Sample Lesson:  Dropping a Ball

As a group, students will be asked the question, “What factors affect the rate at which an object falls to the ground, and can we construct a model of its motion?”

Students will be led to brainstorm ideas on how this model can be devised.  They will then break into small teams to carry out their procedures.  Teams consisting of 3-5 members will use a motion detector or digital video recorder linked to Logger Pro software to track the motion of a falling object.  
This project should also be extended to include the analysis of an object rolling down an inclined plane as a supplementary lesson.  Trials should be conducted varying the angle of inclination of the plane to determine the effect of these changes on the changing velocity of the object.  This procedure also allows students to observe the accelerated motion at a slower rate than an object in free fall, eventually increasing the angle of inclination to 90 degrees at which point the object is in free fall and the study has come full circle.  One member of the team will drop balls of different mass from some fixed height; most likely a second floor window of the school building or the top of the athletic field bleachers.  The video camera or motion sensor is used to record the motion of each ball falling vertically until it hits the ground.  When linked to a computer running Logger Pro software, the video image will show the vertical position of each ball at specific clock readings.  This data will be complied in a spreadsheet, which will be used to create a position vs. time graph for each mass.  

This project has been written up in previous research papers (Source 1, 2, Workshop Physics) where students manually take clock readings as the ball falls to designated height positions.  The data is compiled in a chart such as the one below.  This spreadsheet can be written in Microsoft Excel where students may devise simple formulas to be written in cells for convenience.     
	Universal Time
	Time Interval
	Position
	Average Velocity
	Average Acceleration

	 
	_ 
	_
	_
	_

	
	_
	_
	_
	_

	
	_
	_
	_
	_

	
	_
	_
	_
	_

	
	_
	_
	_
	_

	
	
	
	
	


Incorporating the Logger Pro software and technology enhances the accuracy of measurements and should lead to results that are closer to accepted values students will recognize in writings and texts.    

It is fundamentally important that we establish the slope of a line as a rate of change.  This may seem clearly apparent for the position vs. time graph, but will be confusing in the velocity vs. time graph.  While students may have little trouble comprehending the rate of change in position, but will have difficulty comprehending the rate of change of a rate of change.  

Data values from this chart are then plotted on a graph where the x-axis represents time (in seconds) and the y-axis represents position (in feet or meters).  This graph may be generated by the Logger Pro software in conjunction with the motion sensor or the video.  
Students will examine points along the parabolic curve of the position vs. time graph to determine that the slope of the line connecting any two points represents the average rate of change in the object’s position; or in other words, the average velocity of the object between those two points.  Students will be led to derive this conclusion mathematically by using the slope formula, 
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, where h represents the height of the ball.  In whole group discussion students will be led to the realization while position is changing at every instant in time, and the slope calculated between two instants in time merely represents the average rate of change, or the average velocity of the ball as it falls between given time intervals.  
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Students will then be challenged to calculate a more accurate measurement of the ball’s velocity at each moment.  This should invoke the discussion about how we measure velocity.  Arons tells us at this point that we should discuss what is meant by “uniform velocity” and how we measure average velocity.  (source 6, pg 31)  We establish easily that velocity is the ratio of “distance over time,” but it is conceptually important here that we establish “over time” to mean “during time” as we work our way toward establishing the meaning of instantaneous velocity; the limit as (t approaches zero and the concept of the derivative.  

This will lead students toward narrowing the time intervals, leading to discussing the concept of the limit as students determine  
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This is essentially the definition of the derivative.  
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Arons points out (Source 6, pg 41) that students commonly misinterpret position and velocity, and velocity and acceleration.  In the context of this lesson this can be considered as much a math problem as it is a physics problem.  

Once the velocity of the object has been determined for a sufficient number of data points, this data will be entered into a second spreadsheet to create a velocity vs. time graph.  

The procedure will be repeated using this new velocity vs. time graph.  Students will analyze points along this linear graph, to determine the slope of the line connecting two points as the rate of change in velocity per unit time.  Attention to scale and units will be of particular importance on these graphs.  

On the velocity vs. time graph the slope of the line between two data points gives the average rate of change in velocity, or the average acceleration of the ball between those two points. Similarly, this relationship,  
[image: image6.wmf]1

2

1

2

1

2

1

2

t

t

v

v

x

x

y

y

slope

-

-

=

-

-

=

, leads us to again find smaller and smaller intervals of time in order to determine the instantaneous velocity, and thus, 
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The derivation of the average acceleration slope, leads to the instantaneous acceleration slope which is determined to be constant for all falling objects.  Students’ data charts will include objects (balls) of various masses yet each object will behave the same way.  This will lead students to conclude the force of gravity acts the same on all objects, regardless of mass, and that the acceleration of gravity is a constant 9.8 m/sec2 for all objects close to the Earth’s surface.  

This exercise gives students experience and appreciation for the difficulty of attempting to accurately measure rates of change.   This leads to a discussion on limits and the derivative.  David Tall of the University of Warwick states that the language and notation of calculus gives many students trouble in the fact that they are unclear as to what the notation actually means. For example, students may ask, “
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; Is it a fraction, or a single indivisible symbol?  Can the du be cancelled in the equation 
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?”(Source5, pg6)  Students who are not engaged in the physical application of this notation have little concept of it being a ratio like others they have worked with in more simple contexts.  It is important in concluding this lesson, that we bridge any gaps in notation.  Given side-by-side comparisons, students will recognize that ∆h and ∆t are the same as dh and dt, and that writing 
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 and these values can be treated in familiar ways.  To improve student comprehension in calculus, “Active learning by the students, instead of passive reception of lecture material… in an “experience-discovery
Approach,” writes David Tall.  (Source5, pg 8)  He goes on to state that students in his study who were engaged in active learning earned the “same scores as control students in traditional skills, but significantly higher on a questions requiring conceptual understanding.”  (Source 5, pg 8)
Conclusion

Conceptual understanding of the laws of physics is our primary objective.  Yet the goal of computational proficiency cannot be overlooked.  Intertwining the activities of math & physics serves both curriculums enhancing both conceptual and computational understanding.  A hands-on interdisciplinary activity helps students make connections to what they observe in the physical word to how that scenario is represented mathematically.  Physics is written in the language of mathematics.  These types of activities help students apply physical attributes to the abstract concepts of mathematical functions.  In Calculus, for example, measuring small and smaller time intervals in order to calculate a more accurate velocity gives physical meaning to the concept of taking a limit.  

If it is argued that calculus was developed for the purpose of studying physics, then should it not be taught with the same rigor in the same context?  Calculus is an applicable subject in many areas of physics, engineering, business and many other subjects.  Yet taught in traditional classrooms it is almost entirely conceptual in nature. Such subjects present difficulties to students in not only its language and mechanical operations, but in the ideas themselves.  Topics of a challenging conceptual nature may require many different examples and explanations that demonstrate the concepts from various standpoints.  

For that matter, many topics in mathematics, at all levels would benefit from being taught through interactive-engagement.  The most common question asked to any math teacher is, “When are we ever going to use this stuff?”  The question that should be asked instead  is “How can we use this stuff?”  Interactive-engagement provides a direct answer to both those questions and brings the conceptual to concrete.  
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