An Examination of the Modeling Curriculum for Teaching Physics in Comparison with the New York State Physics Core Curriculum

Matthew Rose
Physics 690
ABSTRACT

The following is an analysis of the ASU-Hestenes Modeling Physics Curriculum. This analysis was done in order to map the second semester of the Modeling Curriculum to the New York State Regents standards found in the Regents' Core Curriculum. The second semester of the Modeling Curriculum contains electricity and magnetism as well as the particle and wave theory of light. At the conclusion of the analysis some suggestions are made for using the Modeling Curriculum in order to meet the New York State Standards, as well as to fill the seemingly un-represented curriculum issues.
INTRODUCTION

In New York State, the physics curriculum is set by the New York State Core Curriculum (NYSCC), which includes the New York State Standards (NYSS)\(^1\). The purpose of the NYSCC, is to guide a teacher through the NYSS to fully prepare their students for the New York State Regents examination in physics. However, since 2000 the Physics Regents' Exam has increased in difficulty in areas like the conceptual understanding of physics phenomena as well as the reading level of the exam.\(^2\) With the increased level of difficulty on the New York State Regents Exam in Physics, nontraditional alternative methods of physics teaching should be considered to help students attain a level of not only passing (65%), but a level of excellence (85%) on the examination. With the incorporation of such alternative methods of physics teaching, students should attain a higher level of understanding. One curriculum that addresses some of these concerns is the Modeling Curricula for teaching high school physics, which was explicitly designed for the purpose of raising students' conceptual understanding of physics.\(^3\)

MODELING METHOD TO TEACHING PHYSICS

According to Malcolm Wells' and David Hestenes' educational research, the modeling method stems from student centered learning, which is essential in order for meaningful learning to take place.\(^3\)

The modeling method and instructional goals and objectives are as follows:

To engage students in understanding the physical world by constructing and using scientific models to describe, to explain, to predict and to control physical phenomena.

To provide students with basic conceptual tools for modeling physical objects and processes, especially mathematical, graphical, and diagrammatic representations.

To familiarize students with a small set of basic models as the content core of physics.

To develop insight into the structure of scientific knowledge by examining how models fit into theories.

To show how scientific knowledge is validated by engaging students in evaluating scientific models through comparison with empirical data.

To develop skills in all aspects of modeling as the procedural core of scientific knowledge.

REASONS FOR MODELING

Before physics instruction, students held beliefs about physics concepts based on their own lived experiences with phenomena in their world. Such beliefs are a major determinate of student performance in introductory physics. “Traditional (lecture-demonstration) physics instruction induces only a small change in beliefs. This result is largely independent of the instructor’s knowledge, experience and teaching style.”

Since 2000, the New York State Regents' Physics-Examination has increased in difficulty, particularly in the level of conceptual understanding assessed. Research shows that when comparing scores from the Force Concept Inventory (or FCI -- an instrument that tests conceptual understanding of physics), traditional methods of teaching showed an average gain of 22 %. “Students learn most effectively when they have a central role in the discovery process.”

In contrast to traditional instruction, using non-traditional, research based methods such as the modeling method for teaching physics, showed an average gain of 52 % on the FCI. It is through non-traditional, research based physics
teaching such as the modeling method that such large gains of conceptual knowledge are possible.

The New York State Core Curriculum

The Physical Setting/Physics Core Curriculum has been written to assist teachers as they prepare curriculum and instruction for the physics content and process skills of the New York State Learning Standards for Mathematics, Science and Technology. The key ideas are broad, generalized statements of what students need to know. “The core curriculum guide is not a syllabus. It addresses the content and process skills as applied to the rigor and relevancy to be assessed by the in the Physics Regents Examination.”

The NYSCC for physics includes standards 1, 2, 6 and 7 which incorporate a student centered, problem solving approach to physics. These standards include but are not limited to:

- **Standard 1 Mathematics and scientific inquiry:**
 Students will use mathematical analysis, scientific inquiry, and engineering design, as appropriate, to propose questions, seek answers, and develop solutions.

- **Standard 2 Information systems:**
 Students will access, generate, process, and transfer information, using appropriate technologies.

- **Standard 6 Interconnectedness: Common Themes:**
 Students will understand the relationships and common themes that connect mathematics, science, and technology and apply the themes to these and other areas of learning.

- **Standard 7 Interdisciplinary Problem Solving:**
 Students will apply the knowledge and thinking skills of mathematics, science, and technology to address real-life problems and make informed decisions.

In addition to this standard 4 is explicitly designed for the physical science setting. The key ideas in standard 4, was to design a standard that outlines:

1. Energy exists in many forms, and when these forms change, energy is conserved.
2. Explain variations in wavelength and frequency in terms of the source of the vibrations that produce them.
3. Energy and matter interact through forces that result in changes in motion.
4. Compare energy relationships with an atom’s nucleus to those outside the nucleus.

In addition to the skills outlined by the NYSS, the NYSCC includes a prerequisite for admission to the Physics Regents Examination; students must have successfully completed a minimum of 1200 minutes of hands on laboratory experience with satisfactory documentation on file.

ANALYSIS

My analysis of the Modeling Curriculum was for what the curriculum calls the second semester, which includes electricity and magnetism, as well as the particle and wave theory of light. The analysis includes mapping out the second semester of a physics class as it would be taught according to the New York State Core Curriculum, and comparing how the Modeling Curricula addresses the same material. The Core Curriculum that was analyzed for this comparison were the Science, Mathematics, and Technology standards as well as standard 4 (which is also known as Regents Physics). I am concerned about those standards in the NYSCC that are not addressed at a minimum of three times throughout the semester and a minimum of four times for those standard 4 topics associated directly with Regents Physics. The second semester of the modeling curriculum contains six units. Each unit was thematically broken down into Tables 1-6 distributing individual units in the modeling curriculum, and how that unit is applicable to the NYSS. Each unit of the modeling curriculum is further broken down into individual activities. A complete break down of how each modeling curriculum activity corresponds to the NYSS is shown in the corresponding tables 1a-6a, sorted in the order

http://physicsed.buffalostate.edu/pubs PHY690/Rose2004ModelingEM/
of the standards. In addition, tables 1b-6b show each modeling curriculum activity that correspond to the NYSS standards in order of the modeling curriculum. Table 7 is a complete tally of all six units, showing exactly how many times each standard is utilized or not utilized over the entire semester. Table 8 is an explicit tally of those NYSS that I believe are not adequately addressed by the standard Modeling Curricula, according to whether it occurred three times or more.

FINDINGS AND DISCUSSION:

This is an examination of electricity and magnetism as well as the particle and wave model of light only. The modeling mechanics curriculum, matched to the NYSS relevant to the mechanics standards, are addressed in a separate accompanying paper analyzing the modeling method for teaching mechanics.\(^5\)

The Modeling Curricula is distributed in a format unique from other curricula and textbooks. The Modeling Curricula is distributed as both a paper format and an electronic format that is purposely distributed as text files. The reasoning for this is that unlike textbooks, Modeling Curricula activities may be modified or edited by teachers to address their teaching styles and needs as teachers feel appropriate. Modifications may also be made that could alter the present activities to incorporate more or all of the NYSS. For example, in addition to the Modeling Curricula a teacher can include additional recourses for teaching electricity and magnetism. Such resources include the CASTLE curricula, which is associated with the Hestenes/ASU Modeling Physics curriculum and has been reviewed for NYSS match in yet another separate accompanying paper.\(^6,7\) The CASTLE curricula can be used to make possible additions and modifications in order to meet the NYSS. Mr. Chris Filkins, a teacher at Fredonia High
School who teaches Regents Physics with the Modeling Curricula, finds that much of the modeling physics electricity and magnetism is not only supplemented by the CASTLE material but the two are complementary to each other.

The largest amount of under-represented material in the Modeling Curricula according to the NYSS are the atomic and modern physics concepts such as those of Standard 4, Key Idea 5.3 “Compare energy relationships within an atom’s nucleus to those outside the nucleus.” There are no applicable parts of the Modeling Curriculum that cover this type of material. To teach this section of the NYSS, I suggest using outside materials such as the Contemporary Physics Education Project (CPEP). CPEP offers many hands-on activities and labs for students.

Although modeling imports many activities which may be used as lab activities, a possible concern in teaching from the modeling curriculum is that documentation of the 1200 minutes of laboratory activities may be felt to be lacking, as these activities do not produce traditional, formal laboratory reports. In order to teach the modeling curriculum effectively a strategy known as white boarding may be used. A white board is a 32" x 24" piece of white tile board. Groups of 2-4 students are given whiteboards and dry erase markers and asked to answer conceptual problems in approximately 20 minutes. In order to document this time affectively, digital photographs may be used while students are collaborating on the whiteboard work. Whiteboards are collected and coarsely group graded, related problems are given on exams and homework. Whiteboard problems are typically modified from curricular materials. At the conclusion of the white boarding activity, a variation of the following can be done in order to fully utilize the potential of the activities.
• Student discourse is anchored in the collaborative construction of solutions to abstract problems on their whiteboards rather than focused on real apparatus.

• No round-robin group presentation is made at the end, though groups may be called upon during an instructor-led debriefing.

• White boards may also be created in explaining classroom demonstrations for elaborate systems in order to explain physical phenomena. Formal lab write-ups can be produced along with the aid of photographs for documentation of laboratory time.
Table of Attached Files:

Chart 1, Tables 1-6 (ModelingE&Mchart1July04)

Table 1a: (Modeling Curriculum Activities in Unit One, in Order of the NYSS)
Table 1b: (Modeling Curriculum and the NYSS that Apply to Each Activity in Unit One)
Table 2a: (Unit Two Modeling Curriculum Activities on NYSS Order)
Table 2b: (Modeling Curriculum and the NYSS that Apply to Each Activity in Unit Two)
Table 3a: (Modeling Curriculum Activities in Unit Three, in Order of the NYSS)
Table 3b: (Modeling Curriculum and the NYSS that Apply to Each Activity in Unit Three)
Table 4a: (Modeling Curriculum Activities in Unit Four, in Order of the NYSS)
Table 4b: (Modeling Curriculum and the NYSS that Apply to Each Activity in Unit Four)
Table 5a: (Modeling Curriculum Activities in Five One, in Order of the NYSS)
Table 5b: (Modeling Curriculum and the NYSS that Apply to Each Activity in Unit Five)
Table 6a: (Modeling Curriculum Activities in Unit 6, in Order of the NYSS)
Table 6b: (Modeling Curriculum and the NYSS that Apply to Each Activity in Unit Six)
Table 7: (Frequency of Occurrence for how the Modeling Curriculum Meets the New York State Standards)
Table 8: (All of the Material not Adequately Represented in the Modeling Curriculum as Compared to the NYSS)
 http://physicsed.buffalostate.edu/pubs/PHY690/Frank2004CASLTE
 http://www.cpepweb.org
 http://physicsed.buffalostate.edu/SeatExpts
 http://physicsed.buffalostate.edu/pubs/CETP

http://modeling.asu.edu/