
Anumber of researchers and teachers1 have
commented on the conceptual difficul-

ties that students encounter visualizing Newton’s
third law for contact forces.  Because the actual
mechanics of this situation relies on invisible
properties of solid matter (microscopic distor-
tion and flexure), students lack observable con-
crete phenomena to anchor their learning.  A
number of strategies for making these invisible
flexures explicit have been created by Minstrell2

(using a mirror on a table and a laser), Clement
and Camp3 (metersticks cantilevered from both
ends), and most recently Chabay and Sherwood4

(who base an entire engineering physics curricu-
lum on the spring-and-ball molecular model of
solid matter).  

In particular, attentive students want to know
what the mechanism is behind Newton’s third
law for contact forces such as the normal force —
How does the upward push of the table exactly
balance the downward weight of several different
books?  How does a tree apparently “know” to
pull back on a rope tied to it with exactly the
same amount of force applied by a person

pulling on the other end of the rope?  Clement
and Camp’s work contains a sequence of bridg-
ing analogies that include examining a book rest-
ing first on a foam pad, next on a thin flexible
board, then extrapolating to a book on a mat-
tress and a book on a ball-and-spring model of a
crystalline solid.  The bottom line is that to justi-
fy Newton’s third law for contact forces we must
provide evidence for microscopic flexures of ap-
parently motionless surfaces.  

Apparatus Setup
We have been delighted with recent PHYS-L5

discussions that describe a simple, low-cost opti-
cal apparatus that magnifies microscopic wall
flexure by 104 times, making Newton’s third law
flexures in solid walls dramatically apparent.
The apparatus (Figs. 1-3) consists of four basic
parts: a laser pointer and holder, a small mirror, a
stand to raise the apparatus off the floor, and a
sturdy meterstick, ring-stand bar, or aluminum
rod.  The mirror (we use a chip from a broken
CD) is glued to a standard 2-in T-shaped biolog-
ical dissecting pin.6 Set a sturdy stand or stool
approximately 60 cm from the wall you intend
to flex.  On top of the stand place a flat, smooth
surface (we use a textbook).  Upon the smooth
surface place the pin-and-mirror assembly, en-
suring it can rotate freely.  With some adhesive
putty (we use the type for hanging posters), at-
tach the butt of the rod to the flexing wall.  The
other end of the rod should rest freely on top of
the pin and mirror, such that as the wall flexes
the rod will move back and forth and roll the pin
and mirror.  Mount the laser pointer such that
its beam is reflected off the mirror and onto a
meterstick located somewhere opposite the flex-
ing wall.  Pushing on the flexing wall will roll the
pin and visibly deflect the laser spot on the scale
(see Fig. 2.)
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Fig. 1. Apparatus for measuring the distance the wall is flexed.
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The distance from the mirror to the target
scale magnifies the slight movement of the mir-
ror; therefore a greater distance will provide a
more dramatic deflection.  In our tests, we could
readily flex a solid brick (covering cinderblock
over steel I-beam) building pillar about 0.18
�m.  Bouncing on the wall clearly deflected the
spot 7.0 m away by well over a centimeter.  With
the inside classroom (plaster over cinderblock)
walls, deflections of 5.4 �m were dramatically
visible, but this certainly included floor deflec-
tion.  It is quite difficult to exclude floor deflec-
tion with this apparatus (we managed with an
outside wall by putting the apparatus on one
large concrete slab and standing on and pushing
the wall from an adjacent slab).  In the class-
room, simply walking up to the apparatus in a
second-floor lecture theater produced a series of
ever-lower dips of the laser spot.

Quantitative Analysis
The mathematical analysis for this apparatus

is simple: using the arc length formula twice, it is
possible to measure the distance the wall is flexed
(see Fig. 1).  Here uppercase symbols refer to the
angular displacement of the laser beam, and low-
ercase symbols to the angular motion of the pin.

The first step is to find the angular displace-
ment of the laser spot reflected from the mirror,
according to 

S = R�,  

where � is the angular displacement of the laser
beam measured in radians, S is the linear dis-
tance the laser spot moves on a scale, and R is the
distance from the mirror to the scale.  This angu-
lar displacement of the laser beam, �, is actually
twice the angular displacement of the mirror and
attached pin which we call � in radians.  The ro-
tation of a planar mirror through an angle ro-
tates the reflection of a stationary beam of light
through twice this angle.7 For the pin, 

s = r�,
where

� = �/2.  
Hence,

s = r� = r = �
2

rS

R
�,

where s is the linear distance of wall flexure and
the arclength subtended by the pin rotation, and
r is the pin radius (0.50 mm).

For a very solid exterior brick building pillar,
the pin was 0.50 mm in radius, the spot deflect-
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Fig. 2. Michael Nordstrand, Flagstaff physics and
mathematics teacher, flexing the NAU Physical
Sciences Building wall.

Fig. 3. Laser beam reflected from mirror.



ed 0.50 cm, and the mirror was 7.1 m from the
scale, so the wall flexed 0.18 �m:

s = �
2

rS

R
� = 

= 0.18 �m

For a more typical interior lecture theater wall
(plaster over cinderblock), the pin was again
0.50 mm in radius, the spot deflected 15 cm,
and the mirror was 7.0 m from the scale, so the
wall flexed 5.4 �m:

s = �
2

rS

R
� = 

= 5.4 �m

Comment
We live in a world of contact-force interac-

tions dominated by microscopic flexure of seem-
ing solid and inflexible objects.  The conceptual
cues provided by this demonstration are particu-
larly valuable because it makes some of these in-
visible phenomena explicit and approachable for
our students. 

We are still unaware of the original source of
this demonstration and welcome readers’ histori-
cal information.  We also are looking for insight-
ful ways of teaching Newton’s third law for non-

(0.50 � 10-3 m)(15 � 10-2m)
���

2(7.0 m)

(0.50 � 10-3 m)(0.50 � 10-2m)
����

2(7.1 m)

contact forces, and welcome any suggestions on
this topic.
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