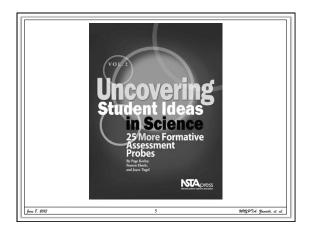
Physics Assessments in New York State: Recent Trends and Resources WNYPTA J. Zawicki, D. Henry - SUNY Buffalo State College T. Johnson, Western New York Regional Information Center

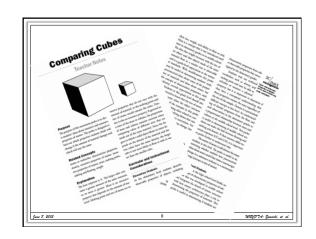
Why analyze assessment data?

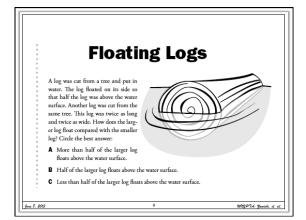
- · Critical links:
 - Curriculum/Assessment/Instruction
 - Effective instructional time
 - · Program Improvement
- Resources
 - Clickers/thumbs up or down
 - Keeley's "Formative Assessment Probes"
- · Misconceptions research
- Learning Progressions
- Peer Discourse/Whiteboarding

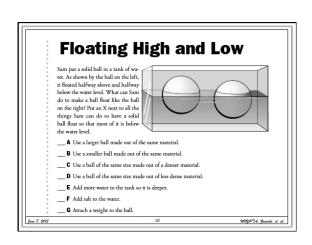

une 5. 2013 2 WHGP7A: Gandidi, et. et.

What is our emphasis?

- One example: Pendulum Motion Emphasis?
 - 1. Technical skills (using stop watches, probeware)
 - 2. Lab skills (creating, completing tables)
 - 3. Data analysis (reconciling individual group & class results)
 - 4. Constructing/refining individual understanding


Genes 5, 2019 3 WHYP7A: Zamicki, et. al.

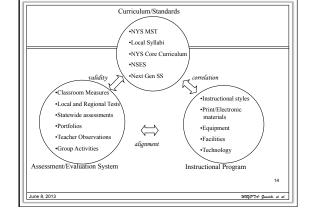

The Larger Picture III IV II Steps in Procedure T T 1. Statement of Problem T T P T T P P 2. Hypothesis T T T P P 3. Working Plan P 4. Performance P P P P P 5. Data Gathering P P P P P 6. Conclusion T P P P P WMVP7A: Zawicki, ct. al.



Physical Science Assessment Probes							Parti Ma	Particulate Matter Ene			
Concept Matrix Probes Core Science Concepts	Comparing Cubes	Floating Logs	Floating High and Low	Solids and Holes	Turning the Dial	Boiling Time and Temperature	Freezing Ice	What's in the Bubbles?	Chemical Bonds	Ice-Cold Lemonade	Mixing Water
Atoms or Molecules	/							~	1		Г
Boiling and Boiling point					1	~		~			
Buoyancy	Π		~								
Change in State					1	~		~			
Characteristic Properties	~	1	1	1	1	~	1				
Chemical Bonds									1		
Conduction										/	~
Density	~	1	1	1							Γ

Lance had a thin, solid piece of material. He placed the material in water and it floated. He took the material out and punched holes all the way through it. What do you think Lance will observe when he puts the material with holes back in the water? Circle your prediction. A It will sink. B It will barely float. C It will float the same as it did before the holes were punched in it. D It will neither sink nor float. It will bob up and down in the water. Explain your thinking. Describe the "rule" or reasoning you used to make your prediction.

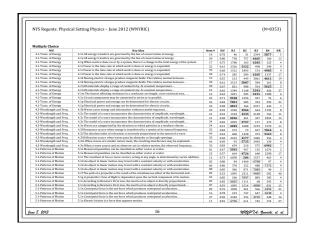
Estimating Item Difficulty is Challenging

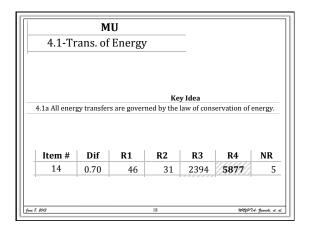

- van de Watering, G. & van der Rijt, (2006) Teachers' and students' perceptions of assessments: A review and a study into the ability and accuracy of estimating the difficulty levels of assessment items. J. Educational Research Review Vol .1, No. 2, pp. 133– 147
- Impara, J., & Plake, B. (1998) Teachers' Ability to Estimate Item Difficulty: A Test of the Assumptions in the Angoff Standard Setting Method, *Journal of Educational Measurement, Vol. 35, No. 1*, pp. 69-81

Gues 5, 2013 12 WMGP7A: Zawicki, et. el.

The Current Climate

APPR


- 1. Develop Student Learning Outcomes (SLOs)
- 2. Estimate item difficulty (Pre-test)
- 3. Consider current and potential instructional approaches
- 4. Generate formative assessments items
- 5. Revisit item difficulty (Post-test)


Difficulty, Discrimination, Response Pattern

2015/P7.4: Zawiobi, et. al.

Test Score	Response (*Correct)
100	A*
95	A*
90	A*
88	A*
85	A*
80	В
78	В
70	В
65	С
60	D
	15

NYS Regents: Physica	l Setting Physics – June 2012 (WNYRIC)						[N=835
5.1-Patterns of Motion	5.1e According to Newton's Third Law, forces occur in action/reaction pairs	47	0.52	(4975)	857	2024	84
5.1-Patterns of Motion	5.1r Momentum is conserved in a closed system.	10	0.00	782	7475	118	554
5.1-Patterns of Motion	5.1r Momentum is conserved in a closed system.	35	0.72	283	1812	8006	242
5.1-Patterns of Motion	5.1s Field strength and direction are determined using a suitable test particle	13	0.55	227	7344	451	292
5.1-Patterns of Motion	5.1s Field strength and direction are determined using a suitable test particle	78	0.60	2404	5043	547	345
5.1-Patterns of Motion	5.1t Gravitational forces are only attractive, whereas electrical and magnetic forces can	45	0.35	2942	175	4219	1014
5.1-Patterns of Motion	5.1s The inverse square law applies to electrical and eravitational fields	15	0.65	5656	712	1754	216
5.1-Patterns of Motion	5.1s The inverse square law applies to electrical and eravitational fields	42	0.71	454	697	1200	3962
5.3-Energy Relationships	5.3b Charge is quantized on two levels. On the atomic level	04	0.00	458	1036	6657	182
5.3-Energy Relationships	5.3c On the atomic level, energy is emitted or absorbed in discrete packets called photons.	44	0.41	765	3911	3440	231
5.3-Energy Relationships	5.3d The energy of a photon is proportional to its frequency.	27	0.91	711	151	2566	470
Standard 6	I3.2 Extend their use of powers of ten notation to understanding the exponential	36	0.69	660	5504	1741	142
Constructed Response	Kevidea		Item i	Det			NR
4.1-Trans. of Energy	4.1c Potential energy is the energy an object possesses by virtue of its position or condition.		52	0.0	2 15	21 683	
4.1-Trans. of Energy	4.1c Potential energy is the energy an object possesses by virtue of its position or condition.		51	0.7		98 625	
4.1-Trans. of Energy	4.1d Kinetic energy is the energy an object possesses by virtue of its motion.		65	0.00		000 725	
4.1-Trans. of Energy	4.1d Kinetic energy is the energy an object possesses by virtue of its motion.		69	0.07	7 16	92 776	
4.1-Trans. of Energy	4.1d Kinetic energy is the energy an object possesses by virtue of its motion.		70	0.97	2 4	35 771	
4.1-Trans. of Energy	4.1e Circuit components may be connected in series or in parallel		60	0.9		35 761	
4.1-Trans. of Energy	4.1e Circuit components may be connected in series or in parallel		61	0.79	17	53 659	6 4
4.1-Trans. of Energy	4.1e Circuit components may be connected in series or in parallel		62	0.07	5 17	57 709	
4.1-Trans. of Energy	4.1e Circuit components may be connected in series or in parallel		63	0.71	1 10	112 653	
4.3-Wavelength and Freq.	4.3c The model of a wave incorporates the characteristics of amplitude, wavelength		64	0.7	1 22	75 607	6 2
4.3-Wavelength and Freq.	4.3c The model of a wave incorporates the characteristics of amplitude, wavelength		65	0.0	5 11	65 718	5 3
4.3-Wavelength and Freq.	4.3h When a wave strikes a boundary between two media, reflection, transmission		190	0.0) 16	63 669	
4.3-Wavelength and Freq.	4.3) When a wave moves from one medium into another, the wave may refract due		77	0.7	7 19	37 641	5 1
4.3-Wavelength and Freq.	4.31 When a wave moves from one medium into another, the wave may refract due		78	0.0	3 16	73 660	0 0
5.1-Patterns of Motion	5.1d An object in linear motion may travel with a constant velocity or with acceleration.		71	0.71	5 20	113 633	9 1
5.1-Patterns of Motion	5.1d An object in linear motion may travel with a constant velocity or with acceleration.		72	0.87	5 13	65 708	
5.1-Patterns of Motion	5.1g A projectile's time of flight is dependent upon the vertical component of its motion.		57	0.63	2 33	95 515	
5.1-Patterns of Motion	5.1h The horizontal displacement of a projectile is dependent upon		56	0.87	5 13	50 710	2 1
5.1-Patterns of Motion	5.1k According to Newton's Second Law, an unbalanced force causes a mass to accelerate.		54	0.71	9 17	47 660	3 3
5.1-Patterns of Motion	5.1k According to Newton's Second Law, an unbalanced force causes a mass to accelerate.		55	0.80	2 14	189 686	
5.1-Patterns of Motion	5.1u The inverse square law applies to electrical and gravitational fields		58	0.5	1 10	11 674	
5.1-Patterns of Motion	5.1u The inverse square law applies to electrical and gravitational fields		59	0.7	24	104 594	7 2
5.3-Energy Relationships	5.3b Charge is quantized on two levels. On the atomic level		83	0.5	34	130 492	1 2
5.3-Energy Relationships	5.3g The Standard Model of Particle Physics has evolved		81	0.63	33	21 523	2 0
5.3-Energy Relationships	5.3g The Standard Model of Particle Physics has evolved		82	0.6	7 27	91 554	2 0
5.3-Energy Relationships	5.3) The fundamental source of all energy in the universe is the conversion of mass into energy	ev.	84	0.3	7 52	20 313	2 1

4.3-Wavelength and Freq.

4.3c The model of a wave incorporates the characteristics of amplitude, wavelength. . .

Item	Difficulty	1 (0)	2 (1)	3	4	NR
21	0.52	1104	4335	2138	765	11
31	0.68	5696	461	327	1855	14
34	0.69	2099	5757	117	372	8
64	0.73	2275	6076			2
65	0.86	1165	7185			3
Since 8, 2013		19			2015/7	7.4: Zawicki, et. e

- 21 The wavelength of a wave doubles as it travels from $\operatorname{medium} A$ into $\operatorname{medium} B$. Compared to the wave in medium A, the wave in medium B has
 - (1) half the speed

 - (1) half the speed(2) twice the speed(3) half the frequency(4) twice the frequency

Item	Difficulty	1	2	3	4	NR
21	0.52	1104	4335	2138	765	11
June 8, 2013		21)		ากหก	7.4: Zawicki, et.

31 What is the wavelength of a 2.50-kilohertz sound wave traveling at 326 meters per second through air?

(1) 0.130 m

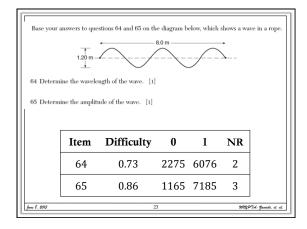
(3) 7.67 m

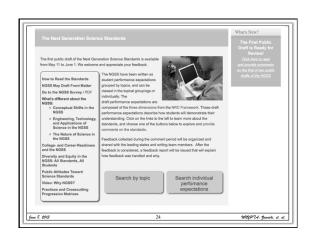
(2) 1.30 m

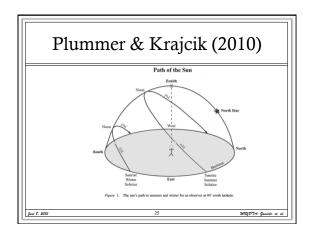
(4) 130. m

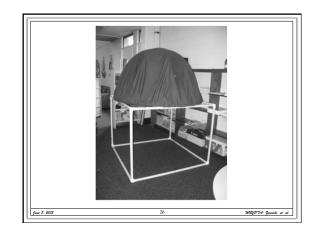
l	Item	Difficulty	1	2	3	4	NR
	31	0.68	5696	461	327	1855	14
			21				

34 While sitting in a boat, a fisherman observes that two complete waves pass by his position every 4 seconds. What is the period of these waves?

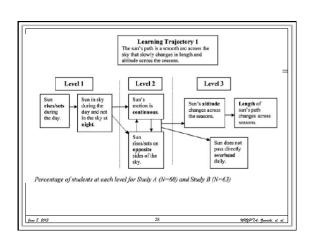

(1) 0.5 s

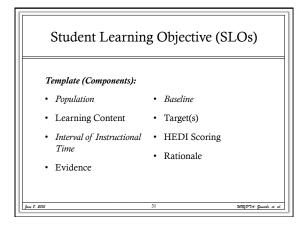

(3) 8 s

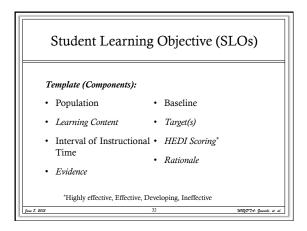

(2) 2 s

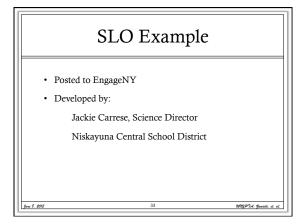

(4) 4 s

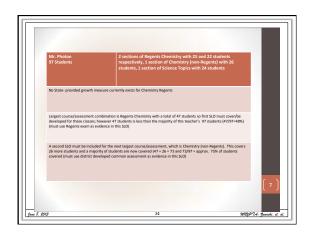
	Item	Difficulty	1	2	3	4	NR
	34	0.69	2099	5757	117	372	8
Ŀ	lunc 8, 2013		2:	2		างกฤ	74: Zewicki, et.

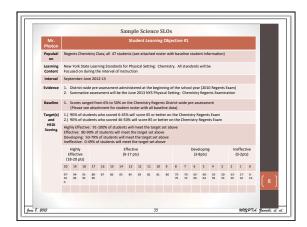


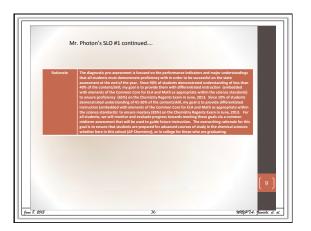


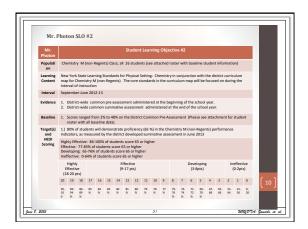

Learning Progression 1 (1) The sun's path is a smooth are across the sky that slowly changes in length and altitude across the seasons. (2) The moon moves across the sky on a daily basis in a similar path to the sun, sometimes during the day and sometimes at night. (3) The pattern of stars remains the same but appear to move across the sky nightly. The stars visible after sunset change slowly across the seasons. (4) The appearance of the moon changes slowly in a cycle that lasts about a month.

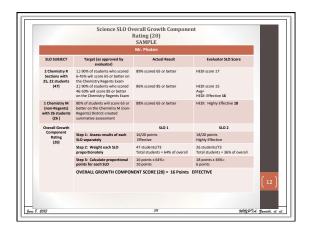


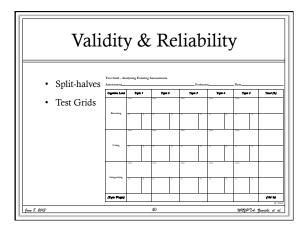

		Level 1	Level	Level	Level 3	Level 3	Level 3
	(Rise/set)	(Day/night)	2	2	(Overhead)	(Altitude)	(Length)
			(Cont)	(Opp)			
Study A							
1st grade	65%	79% ^{a,b}	60%	30%	0%	0%	0%
3 rd grade	95%	75% ^b	90%	70%	0%	0%	0%
8th grade	100%	90% ^b	95%	100%	5%	10%	0%
Study B							
Before	86%	81%	N/A	68%	2%	3%	5%
After	97%	86%	N/A	86%	54%	59%	57%
* One stude	nt was not asko	d.					


Student Learning Objective (SLOs) Template (Components): • Population • Baseline • Learning Content¹ • Target(s)¹ • Interval of Instructional • HEDI Scoring¹ Time • Rationale² • Evidence¹ • Evidence¹ • IJustification (Rationale) • Essential



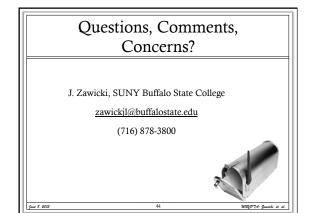






Resources: • EngageNY SLO Landing page: http://engag eny.org/ resource/ student-learmng-oQject/ves/ • SLO Guidance document:http:// engageny.org/wp-contem/uploads/ 20 1 Z / 03 / slo-guildance.pdf • SLO Roadmap: http:// engageny.org/wp-content/ uploads/ 20 12/ 03 / slo-roadmap.pdf • SLO Webinars (Series I): http://engageny.org/ resource/ student-learning-objectives-webinar-series-i-winter-2012/

SLO Resources • (Series II) http://engageny.org/resource/student-learning-objectives-webinar-series-il-fall-20 12/ • Series for Teachers: http://engageny.org/resource/student-learning-objectives-video-series-for-teachers/ • SLO Models:http://engageny.org/news/student-learning-objective-exemplars-from-new-york-stateteachers-are-now-available/ • SLO Template: http://engageny.org/resource/new-york-state-student-learning-objective-template/ • APPR Guidance document: http://engageny.org/wp-content/uploads/20 12/ 05/APPR-Field-Guidance.pdf


SLO Resources

- The "Purple Memo": http://engageny.org/wp-content/uploads/20 12/03/nys-evaluation-plans-guidance-memo.pdf
- Approved List of 3rd Party Assessments: http://usny.nysed.gov/ rttt/teachers-leaders/ assessments/ approved-list.html
- Approved Practice Rubrics for Teachers and Principals: http:// usny.nysed.goy/ rttt/teachers.-leaders/practicerubrics/home.html
- Approved Surveys of Students or Families for Use in Teacher and Principal Evaluations: http://usny.nysed.goylrttt/teachers-leaders/ agproved-suryeya/bome.htm1

luce 8, 2013

3

WW.P7.4: Zawicki, et. al.

